Опорные генераторы. Синтезаторы частоты Пассивный цифровой синтез частот

Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.
Содержание:

Способы контроля

Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

  • U/f – вольт на герц;
  • U/f с энкодером;
  • Векторное управление с разомкнутым контуром;
  • Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

Способ управления U/F

Управление вольт-на-герц, наиболее часто называемое как U/F, пожалуй, самый простой способ регулирования. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода (но рекомендовано). Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/F довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

Модель с постоянным моментом вращения имеет постоянный вращающий момент во всем диапазоне скоростей при одинаковом соотношении U/F. Модель с переменным соотношением вращающего момента имеет более низкое напряжение питания на низких скоростях. Это необходимо для предотвращения насыщения электрической машины.

U/F — это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/F без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/F.

Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

Диапазон регулирования скорости при использовании способа U/F составляет 1:40. Умножив это соотношение на максимальную рабочую частоту электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

Паттерн U/F определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/F одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/F предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.


Способ управления U/F с энкодером

Если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/F.

Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/F минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/F. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель . Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (I d) и крутящего момента (I q).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (I d) и крутящего момента (I q). Для достижения максимальной производительности, преобразователь частоты должен держать I d и I q разведенными на угол 90 0 . Это существенно, так как sin 90 0 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.

Читайте также:
  1. Асинхронный двигатель. Рабочие характеристики. Пуск асинхронного электродвигателя. Регулирование частоты вращения двигателя. Тормозные режимы асинхронного двигателя.
  2. Выбор преобразователя частоты и дополнительного оборудования
  3. Излучение бер/год электрический ток 9->.8|м/о частоты богц
  4. Использование системного монитора. Выбор метода мониторинга. Выбор частоты регистрации.
  5. Какие гидродинамические датчики частоты вращения применяют в судовой практике?
  6. Какие датчики применяют для измерения частоты вращения?

Назначение и принцип действия синтезаторов частот

Синтезатор частот предназначен для управления частотой ГУН (125..177,5) МГц со стабильностью, равной стабильности опорного генератора, и формирования сетки опорных частот с дискретностью через 25 кГц в диапазоне МВ и ДМВ.

Синтезатор частот выполняет следующие функции:

Выдает управляющее напряжение в соответствии с набранным на пульте управления каналом (кодом заданной рабочей частоты) для установки частоты ГУН с заданной стабильностью (1·10 -6), для настройки УВЧ приемника, для грубой установки частот автогенераторов возбудителя.

Исходя из выбранных значений промежуточных частот и видов преобразований, синтезатор частот обеспечивает формирование сетки частот ГУН:

МВ: 125..174,975 МГц с интервалом 25 кГц;

ДМВ-1: 132,5..172,4875 МГц с интервалом 12,5 кГц;

ДМВ-2: 127,5..177,4875) МГц с интервалом 12,5 кГц;

Выдает в блок коммутации признаки МВ и ДМВ-1.

Выдает в пульт управления по трем проводам напряжение синхронизации, позволяющее получить из пульта управления информацию о набранном канале по двум проводам.

В основу построения синтезатора частот положены свойства, присущие системе ФАПЧ с делителем частоты в цепи обратной связи с предварительным преобразованием гармонических колебаний ГУН и опорного генератора с помощью формирующих устройств в последовательность видеоимпульсов. Это позволило широко использовать при реализации схем синтезаторов элементы и узлы дискретной техники и послужило основанием назвать такие системы цифровыми синтезаторами.

Таким образом, синтезатор совместно с ГУН представляет собой схему ФАПЧ.

Для пояснения цифрового метода формирования и стабилизации дискретного множества частот рассмотрим качественную картину процессов, происходящих в цифровом синтезаторе.

Гармонический сигнал высокостабильного опорного генератора с частотой 10 МГц (стабильность частоты опорного генератора не хуже ± 1·10 -6 во всех условиях эксплуатации) первоначально подается на формирующее устройство, с помощью которого оно преобразуется в последовательность однополярных импульсов с частотой сравнения f ср =781,25 Гц, т. е. частота опорного генератора делится до частоты сравнения f ср =781,25 Гц.



При этом синтезатор частот совместно с ГУН, функционально входящим в состав УВЧ, представляет собой замкнутую систему ФАПЧ. Кольцо автоподстройки работает с низкой частотой сравнения 781,25 Гц.

Номинал этой частоты определяется разносом частот между каналами (25 кГц), наличием делителя с постоянным коэффициентом деления (на 8 в ВЧД и на 2 в БУЧ) и удвоителя в составе гетеродина.

Частота ГУН последовательно понижается делителями с постоянным и переменным коэффициентом деления.

Поделенные частоты ГУН и опорного генератора подаются для сравнения на ФД.

Если выходная частота ДПКД (f дпкд) не равна частоте сравнения (f ср), то в ФД вырабатывается сигнал рассогласования, управляющий частотой ГУН. При этом частота ГУН изменяется так, чтобы выходная частота ДПКД стала равной частоте сравнения (f дпкд = f ср = 781, 25 Гц) с точностью до фазы (точная подстройка).

где f гун – частота ГУН; 8 – коэффициент деления ВЧД; 2 – коэффициент деления делителя, входящего в состав БУЧ; N – коэффициент деления ДПКД.

Установка необходимого коэффициента ДПКД производится с пульта управления через систему дистанционного управления СДУ и позволяет производить установку любой частот связи по пяти проводам, связывающий пульт управления с синтезатором частот.



Блок опорной частоты (блок 1-1)

БОЧ предназначен для формирования высокостабильной частоты опорного генератора 10 МГц и понижения ее до частоты сравнения.

БОЧ обеспечивает:

формирование опорного сигнала частотой 20 МГц;

формирование сигнала синхронизации;

формирование стробирующих импульсов для СДУ.

В состав БОЧ входят:

Опорный генератор (субблок 1-1-1) ГО-4А;

Формирователь-удвоитель (субблок 1-1-2);

Делитель опорной частоты.

Опорный генератор служит для получения высокостабильного (стабильность не хуже ± 1·10 -6) напряжения с частотой 10 МГц.

Высокая стабильность частоты кварцевого генератора достигается термостатированием элементов генератора и стабилизацией напряжения питания.

Синусоидальное напряжение с частотой 10 МГц усиливается усилителем и поступает (рисунок 3.1)

На формирователь, где формирует напряжение прямоугольной формы для запуска делителя опорной частоты;

На удвоитель, где формируется напряжение второго гетеродина f ог = 20 МГц в диапазоне ДМВ.

Удвоитель собран по дифференциальной схеме и включается в работу в поддиапазонах ДМВ по команде «ПРИЗНАК ДМВ» с блока коммутации.

Делитель опорной частоты формирует:

Для ФД напряжение запуска генератора пилы с частотой f ср = 781,25 Гц;

Для СДУ сигнал синхронизации с частотой f ср;

Стробирующие импульсы с частотой 1562,5 Гц для дешифратора СДУ.

ДОЧ представляет собой делитель, обеспечивающий коэффициент деления N = 12800, который обеспечивается последовательным включением делителя на 25 и девяти делителей на 2. ДОЧ формирует сигналы (рисунок 3.2):

- «запуск пилы» для запуска генератора пилы в блоке ФД;

- «синхронизация СДУ» для запуска синхронизатора СДУ;

- «стробирующий импульс» для запуска дешифратора СДУ.

Рисунок 3.1

1. Полоса пропускания или параметры переходной характеристики. Полоса пропускания – диапазон частот, в котором АЧХ имеет спад не более 3 дБ относительно значения на опорной частоте. Опорная частота – частота, на которой спад АЧХ отсутствует. Значение спада АЧХ в дБ находит из соотношения:

где l f оп - значение изображения на опорной частоте,
l f изм - размер изображения на частоте, для которой измеряется спад АЧХ.

2. Неравномерность АЧХ.

3. Нелинейность амплитудной характеристики усилителя ЭО: β a =(l-1)*100% , где l – наиболее отличающийся от одного деления шкалы экрана размер изображения сигнала в любом месте рабочей зоны экрана. Её измеряют, подавая на вход осциллографа сигнал импульсной или синусоидальной формы с амплитудой, обеспечивающей получение в центре экрана ЭЛТ изображения сигнала размером в одно деление шкалы. Затем измеряют размер изображения сигнала в различных местах рабочей части экрана, перемещая его по вертикальной оси с помощью внешнего источника напряжения.

4. Качество воспроизведения сигнала в импульсном ЭО. Это качество характеризуется параметрами переходной характеристики (ПХ):

4.1. Время нарастания переходной характеристики (ПХ) - τ н измеряют при следующих условиях: на вход ЭО подают импульсы с временем нарастания не более 0,3 времени нарастания ПХ, указанной в паспорте, в стандартах или технической документации на ЭО конкретного типа. Длительность импульса должна быть не менее, чем в 10 раз больше времени нарастания ПХ. Выбросы на импульсе не должны превышать 10% времени нарастания изображения импульса, в течение которого происходит отклонение луча от уровня 0.1 до уровня 0.9 амплитуды импульса;

4.2. Значение величины выброса: δ u = (l B / lu)*100% , где l B – амплитуда изображения выброса, l u - амплитуда изображения импульса. Определение δ u производят на импульсах положительной и отрицательной полярности.

4.3. Спад вершины изображения импульса: l СП (значение величины спада импульса) измеряют, подавая на вход канала вертикального отклонения импульс длительностью более 25 τ н с амплитудой, обеспечивающей максимальный размер изображения импульса в рабочей части экрана ЭЛТ. Значение спада вершины импульса измеряют по его изображению в точке, отстоящей от начала импульса на время, равное его длительности. Нормируют значение относительно спада вершины импульса, которое определяется по формуле: Q=l СП /l u

4.4. Неравномерность вершины изображения импульса (отражение, синхронность наводки). Величина отражения γ определяется из формулы γ=(S 1 -S) / S , где S 1 – амплитуда выброса или спада, S – толщина линии луча, указанная в стандартах или в описании на данный ЭО. Синхронные наводки v определяют измерением амплитуд, наложенных на изображение колебаний, вызванных внутренними наводками, синхронным запуском развертки: v = (v 1 -S) / S , где v 1 – отклонение луча ЭЛТ из-за наложения на изображение колебаний, вызванных внутренней наводкой. Зная параметры ПХ можно определить параметры АЧХ: f B = 350/τ н (МГц), f н = Q / (2π τ u)(Гц).

5. Чувствительность (нормальное значение коэффициента отклонения): ε=l/U вх …K d =1/ε=U вх /l…δ K =(K d /K d0)*100% , где ε - чувствительность, l – значение изображения амплитуды импульса, U вх – значение амплитуды входного сигнала, K d – коэффициент отклонения сигнала по ОУ, δ К – погрешность коэффициента отклонения, K d0 – номинальное значение K d , указанное в технической документации.

6. Параметры входа ЭО с полосой пропускания до 30 МГц определяются непосредственным измерением R и С соответствующими приборами. Для более широкополосных ЭО в тех. описании дается методика определения этих параметров.

7. Погрешности калибратора амплитуды и калибратора временных интервалов и их измерение. Определение погрешности измерения данных параметров производится путем сравнения показаний испытуемого ЭО и образцового измерительного устройства с погрешностью измерения соответствующей величины в 3 раза меньшей, чем у поверяемого ЭО.

8. Длительность развертки – время прямого хода развертки, за которое луч пробегает всю рабочую часть экрана в горизонтальном направлении. В современных ЭО длительность прямого хода развертки Т П задается в виде коэффициента развертки К р = Т П /l Т, δ р =(К р /К р ном -1)*100% , где l Т – длина отрезка горизонтальной оси, соответствующая длительности Т П , δ р – погрешность коэффициента развертки, К р ном – номинальное значение коэффициента развертки.

9. Нелинейность развертки: β р =(l-1)*100% , где l – длительность наиболее отличающегося от 1 см или одного деления шкалы временного интервала в любом места рабочей части развертки в пределах рабочей части экрана.



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.

Синтез частот - формирование дискретного множества частот из одной или нескольких опорных частот f on . Опорной называется высокостабильная частота автогенератора, обычно кварцевого.

Синтезатор частот (СЧ) - устройство, реализующее процесс синтеза. Синтезатор используется в радиоприемных и радиопередающих устройствах систем радиосвязи, радионавигации, радиолокации и другого назначения.

Основными параметрами синтезатора являются: диапазон частот выходного сигнала, количество N и шаг сетки частот Df ш, долговременная и кратковременная нестабильность частоты, уровень побочных составляющих в выходном сигнале и время перехода с одной частоты на другую. В современных синтезаторах число формируемых им дискретных частот может достигать десятков тысяч, а шаг сетки изменяться от десятков герц до десятков и сотен килогерц. Долговременная нестабильность частоты, определяемая кварцевым автогенератором, составляет 10 –6 , а в специальных случаях - 10 –8 …10 –9 . Диапазон частот синтезатора меняется в больших пределах в зависимости от назначения аппаратуры, в которой он используется.

Практические схемы синтезаторов частот весьма разнообразны. Несмотря на это разнообразие, можно отметить общие принципы, лежащие в основе построения современных синтезаторов:

Все синтезаторы основаны на использовании одного высокостабильного опорного колебания с некоторой частотой f 0 , источником которого обычно является опорный кварцевый генератор;

Синтез множества частот осуществляется широким использованием делителей, умножителей и преобразователей частоты, обеспечивающих использование одного опорного колебания для формирования сетки частот;

Обеспечение синтезаторами частот декадной установки частоты возбудителя.

По методу формирования выходных колебаний синтезаторы подразделяются на две группы: выполненные по методу прямого (пассивного) синтеза и выполненные по методу косвенного (активного) синтеза.

К первой группе относятся синтезаторы, в которых выходные колебания формируются путём деления умножения частоты опорного генератора с последующим сложением и вычитанием частот, полученных в результате деления и умножения.

Ко второй группе относятся синтезаторы, формирующие выходные колебания в диапазонном автогенераторе гармонических колебаний с параметрической стабилизацией частоты, нестабильность которого устраняется системой автоматической подстройки частоты (АПЧ) по эталонным (высокостабильным) частотам.

Синтезаторы обоих групп могут быть выполнены с использованием аналоговой или цифровой элементной базы.

Синтезаторы, выполненные по методу прямого синтеза.

Высокостабильный кварцевый генератор ОГ формирует колебания с частотой f 0 , которые поступают на делители и умножители частоты ДЧ и УЧ.


Делители частоты понижают частоту ОГ f 0 в целое число раз (d), а умножители частоты увеличивают её в целое число раз (к). Частоты, полученные в результате деления и умножения частоты опорного генератора (f 0), используются для формирования опорных частот в специальных устройствах, которые называют датчиками опорных частот ДОЧ. Общее количество датчиков опорных частот в синтезаторе частот СЧ зависит от диапазона формируемых синтезатором частот и интервала между соседними частотами: чем шире диапазон частот СЧ и меньше интервал, тем больше количество ДОЧ требуется. При декадной установке частоты каждый ДОЧ формирует десять опорных частот с определённым интервалом между соседними частотами. Общее количество необходимых датчиков определяется количеством цифр (разрядов) в записи максимальной частоты синтезатора.

Опорные частоты, сформированные в датчиках, подаются на смесители. Полосовые переключаемые фильтры, включённые на выходе смесителей, выделяют в данном примере суммарную частоту: на выходе первого f 1 + f 2 , на выходе второго f 1 + f 2 + f 3 , на выходе третьего f 1 + f 2 + f 3 + f 4 .

Частота на выходе возбудителя при декадной установке определяется положениями переключателей каждой декады.

Относительная нестабильность частоты на выходе синтезатора равна нестабильности ОГ. Недостатком такого типа синтезаторов является наличие на его выходе большого числа комбинационных частот, что объясняется широким использованием смесителей.

Синтезаторы частот, построенные по методу косвенного синтеза

В синтезаторах, выполненных по методу косвенного синтеза, источником выходных колебаний является диапазонный автогенератор гармонических колебаний, автоматически подстраиваемый по высокостабильным частотам, формируемым в блоке опорных частот БОЧ.

Суть автоматической подстройки частоты АПЧ состоит в том, что колебания автогенератора с помощью высокостабильных частот преобразуются к некоторой постоянной частоте f АПЧ, которая сравнивается с эталонным значением частоты. В случае несовпадения сравниваемых частот формируется управляющее напряжение, которое подается на управляемый реактивный элемент и изменяет величину его реактивности (ёмкости или индуктивности).

Управляемые реактивные элементы включаются в контур, определяющий частоту АГ. Частота АГ изменяется до тех пор, пока f АПЧ не приблизится к эталонной частоте с достаточно малой остаточной расстройкой.

В зависимости от устройства сравнения все системы АПЧ можно разделить на три вида:

Системы с частотной автоподстройкой частоты ЧАП, в которой в качестве сравнивающего устройства используются частотные детекторы ЧД;

Системы с фазовой автоподстройкой частоты ФАП, использующие в качестве сравнивающего устройства фазовые детекторы ФД;

Системы с импульсно-фазовой автоподстройкой частоты ИФАП, в которых сравнивающим устройством являются импульсно-фазовые детекторы ИФД.

Синтезаторы с фазовой автоподстройкой частоты ФАП, в отличие от

синтезаторов с ЧАП, не имеют остаточной расстройки. В системе ФАП сравнивающим устройством является фазовый детектор ФД. Управляющее напряжение на выходе ФД пропорционально разности фаз двух поданных на него колебаний, частоты которых в установившемся режиме равны.

На ФД подаются два колебания близких частот: одно из которых является эталонным с частотой f 0 , формируемой в БОЧ, второе является продуктом преобразования колебаний УГ в смесителе с помощью сетки частот f 01 с БОЧ

f ПР = f УГ – f 01 .

Если f ПР и f 0 близки по величине, то с выхода ФД управляющее напряжение скомпенсирует расстройку УГ и f ПР = f 0 , в системе устанавливается стационарный режим. Однако система ФАП работает в очень узкой полосе частот, не превышающей единиц кГц. Чтобы обеспечить перестройку УГ во всём его диапазоне частот, в синтезаторе с ФАП применяют систему автопоиска, которая, изменяя частоту УГ во всем диапазоне частот, обеспечивает её попадание в полосу охватывания системы ФАП. Система автопоиска представляет собой автогенератор пилообразного напряжения, который запускается при отсутствии управляющего напряжения на выходе ФНЧ. Как только частоты УГ попадают в полосу схватывания системы ФАП, генератор поиска выключается, система входит в режим автоподстройки с динамическим равновесием f ПР =f 0 .

Использование логических элементов в СЧ обусловило появление новых типов синтезаторов, которые называются цифровыми. Они обладают значительными преимуществами по сравнению с аналоговыми. Они более просты, надёжны в эксплуатации, имеют меньшие габариты и массу.

Применение логических интегральных схем в ЦСЧ позволило почти полностью исключить преобразование частоты УГ, заменив преобразователи делителем частоты с переменным коэффициентом деления ДПКД.

Структурная схема синтезатора с одним кольцом фазовой автоподстройки частоты

На схеме ДПКД - делитель с переменным коэффициентом деления - К-разрядный программируемый цифровой счетчик. Назначение других звеньев схемы ясно из сделанных на них надписей. В блоке управления осуществляется прием и хранение данных программирования и формирование кодового сигнала, по которому устанавливается значение коэффициента деления N в зависимости от поступившей на синтезатор команды. В результате действия фазовой автоподстройки частоты устанавливается равенство частот сигналов, поступающих на вход импульсно-фазового дискриминатора: f 1 =f 2 , что позволяет записать следующее соотношение для частот стабилизируемого и эталонного автогенераторов с учетом значений коэффициентов деления:

Согласно шаг сетки частот Df ш =f эт /М. Меняя управляемое значение N, устанавливают требуемое значение частоты стабилизируемого генератора, который с помощью управляющего элемента может перестраиваться в требуемом диапазоне частот.

8.4.1. Основные характеристики осциллографов.

1. Полоса пропускания или параметры переходной характерис­ тики (ПХ) Полоса пропускания - это диапазон частот, в котором амплитудно-частотная характеристика имеет спад не более 3 дБ относительно значения на опорной частоте. Опорная частота - частота, на которой спад АЧХ отсутствует. Значение спада АЧХ в децибелах находят из соотношения

(8.19)

где l f оп - размер изображения на опорной частоте: l f изм -размер изображения начастоте,для которой измеряется спадАХЧ.

2. Неравномерностьамплитудно-частотной характеристики.

3. Нелинейность амплитудной характеристики усилителей осциллографа β а . Значение Р а определяют поформуле

(8.20)

где l -наиболее отличающийся от одного деления шкалы экрана размер изображения сигнала в любом месте рабочей части экрана.

4. Качество воспроизведения сигнала в импульсном осциллогра­ фе.

Это качество часто характеризуется параметрами переходной характеристики, к которым относятся: время нарастания переходной характеристики τ н, величина выброса на ПХ, спад вершины изображения импульса.

Время нарастания переходной характеристики τ н определяют как время нарастания изображения импульса, в течение которого происходит отклонение луча от уровня 0,1 до уровня 0,9 амплитуды импульса (рис. 8.14, а).


а)б)

рис. 8.14.

Величину выброса на ПХ δ и измеряют на том же испытательном сигнале, что и время нарастания τ н , и определяют по формуле

,(8.21)

где l в - амплитуда изображения выброса; l и - амплитуда изобра жения импульса.

Определение δ и производят на импульсах положительной и отрицательной полярностей.

Спад вершины изображения (рис.8.14, б) нормируют по относительному спаду вершины импульса, который определяют по формуле

,(8.22)

где l сп - значениевеличиныизображенияспадаимпульса;/ и - значение амплитудыизображенияимпульса.

ЗнаяпараметрыПХ,можноопределитьпараметрыАЧХ, и наоборот.Верхняя граничная частота полосы пропускания

(8.23)

где f в - выражена в мегагерцах; τ н - в наносекундах.

Нижняя граничная частота

(8.24)

где f н - выраженав герцах;τ и - в секундах.

5. Чувствительность (нормальное значение калиброванного коэффициента отклонения). Чувствительность ε определяют как отношение видимого отклонения луча в миллиметрах к значению вызвавшего его входного сигнала в вольтах или милливольтах. Коэффициент отклонения K d - величина, обратная чувствитель­ности.

: (8.25)

где U BX - значениеамплитудывходногосигнала; l -значение изображенияамплитудыэтогосигнала пооси Y .

Нормируемымипараметрамиосциллографаявляютсявсе калиброванныезначениякоэффициентаотклоненияиих погрешности. Погрешность коэффициента отклонения определяют по формуле

(8.26)

где K d 0 - номинальноезначение K d , указанноевтехнической документации на конкретный осциллограф.

6. Параметры входов . Например: вход открытый (закрытый), входное сопротивление 1 МОм + 3%, входная емкость, параллельная входному сопротивлению, не более 35пФ+10%.

7. Погрешностикалибраторовамплитудыикалибраторов временных интервалов.

8. Длительностьразверток. Длительностьразверток - это время прямого хода развертки, за которое луч пробегает всю рабочую часть экрана в горизонтальном направлении. ДлительностьпрямогоходаразверткиТ п задается в виде коэффициентов развертки

,(8.27)

где 1 Т - длина отрезка горизонтальной оси, соответствующая длительности Т п. Коэффициент развертки характеризуется диапа­зоном изменений, основной и дополнительными погрешностями. Погрешность коэффициента развертки

,(8.28)

где К рном - номинальное значение коэффициента развертки.

9. Нелинейность развертки. Значение нелинейности развертки в процентах вычисляют из соотношения

,(8.29)

где /-длительность наиболее отличающегося от 1 см, или одного деления шкалы, временного интервала в любом месте рабочей части развертки в пределах рабочей части экрана.

Кроме указанных характеристик в соответствии со стандар­ тами осциллограф характеризуется следующими параметрами: рабочей частью экрана; минимальной частотой следования раз­вертки; толщиной линий луча электронно-лучевой трубки; допус­ каемым суммарным значением постоянного и переменного напря­жений на входах; максимально допустимым значением амплитуды исследуемого сигнала; минимальным значением и минимальной длительностью исследуемого сигнала, при котором обеспечи­ вается класс точности осциллографа; дрейфом нуля усилителей; запаздыванием начала развертки относительно сигнала синхро­низации (для осциллографов без линии задержки); возможностью синхронизации (внешней, внутренней); разностью фаз между каналами; наводками с канала на канал; конструктивными характеристиками (масса, габариты, питание, климатические усло­ вия и т. д.).

В зависимости от точностных параметров ЭЛО в соответствий с ГОСТ 22737 - 77 «Осциллографы электронно-лучевые» делятся на четыре классаточности.