Качественный переменный резистор для регулировки громкости. Регулятор громкости: схема и применение. Включение переменных резисторов в электрическую цепь

Регулятор громкости — это устройство, позволяющее изменять величину электрического напряжения на выходе при воздействии на органы управления, либо при поступлении управляющего сигнала. Используется как в составе электронной аппаратуры, так и в виде отдельного изделия.

Регулятор громкости может быть как регулятором напряжения, так и регулятором тока, ведь его задача регулировать выходную мощность усилителя на какой то нагрузке, т.е., если регулятор представляет из себя переменный резистор на входе усилителя, то он регулирует напряжение которое поступает на дифференциальный каскад усилителя, тем самым уменьшая или ограничивая до максимального уровень входного сигнала. Если регулировка выходной мощности осуществляется на выходе усилителя, к примеру, добавочное сопротивление, включаемое последовательно с нагрузкой, то это уже будет регулятором тока, так как без нагрузки, напряжение на выходе усилителя будет неизменным. Так же можно назвать регулятором тока - резистор в цепи обратной связи, который реализован при помощи датчика тока - резистора, последовательно с нагрузкой которого, снимается сигнал и подаётся на инвертирующий вход усилителя.

Таким образом получается, что переменный резистор может выполнять роль и регулятора тока и регулятора напряжения в зависимости от того где он включён.

Так же можно назвать регулятором тока и регулятор громкости в усилителе ИТУН, который стоит на входе схемы. Он регулирует входное напряжение, но благодаря обратной связи по току (с датчика тока – добавочного резистора при прохождении тока снимается напряжение, чем выше ток, который по нему проходит, тем больше на этом резисторе падение напряжения) сам регулятор громкости не регулирует ток в нагрузке, но далее по схеме осуществляется связь по току, к примеру если выкинуть из ИТУНа этот резистор, то связь будет только по напряжению и регулятор громкости будет регулятором напряжения *в чистом виде*. Это как тумблер и электромагнитное реле, сам по себе тумблер не может пропустить большие токи, и он подаёт сигнал реле с мощными контактными группами, а стоят ли последовательно с этими группами контактов добавочные резисторы - тумблеру *глубоко и с большой высоты*.

Регулятором громкости служит переменный резистор, в стерео усилителях, это сдвоенный переменный резистор. На первых двух рисунках представлен внешний вид сдвоенного переменного резистора. Сопротивление переменного резистора может быть в пределах от 20 до 100 кОм, это зависит от конструкции усилителя. На третьем и четвёртом рисунках изображена схема включения регулятора (один канал) и соответствие выводов к схеме. Пятый рисунок показывает, как надо правильно припаять провода.

Регулятором тока может быть магнитный шунт в трансформаторе, такой вид регулировки выходной мощности применяется в сварочных аппаратах для ручной дуговой сварки и как ни странно в довольно дорогих ламповых усилителях.

Так же регулятором громкости может выступать дроссель на входе с изменяющейся индуктивностью (ферритовый сердечник перемещается по резьбе в виде винта), так часто было устроено в старых ламповых радиолах, и по сути там звук никогда не хрипел при повороте ручки, так как механически никакого контакта не было, а значит и стираться было нечему.

Ещё были регуляторы громкости, по средству подмагничивания звуковой катушки в самом динамике. Было это очень просто и эффективно, такой регулятор громкости можешь собрать самому, только придётся делать собственную магнитную систему. Принцип работы простой, вместо постоянного магнита использовался электромагнит, а подаваемое на его обмотку напряжение создавало необходимый ток, который создавал магнитное поле, чем больше было это магнитное поле, тем больше была чувствительность у динамической головки, следовательно чем меньшее напряжение подавалось на обмотку электромагнита - тем тише играл динамик, причём независимо от подводимой к звуковой катушке мощности. В дальнейшем от такого регулятора отказались, и стали делать регуляторы на переменных резисторах по входу схемы, так проще. Но динамики то такие ещё оставались (без постоянных магнитов, с двумя катушками), и их начали подключать к силовым трансформаторам последовательно с нитями накала радиоламп, таким способом (методом) убивали двух, если не трёх зайцев. Первый – избавлялись от кучи старых динамиков, второй – улучшалось качество питания радиоламп и они служили дольше, так как катушка в динамике выступала в роли дросселя для нити накала и ток был стабильнее, а значит и работа нити была более *ровнее*, третья – можно было получить гораздо большую мощность динамической головки, нежели при использовании *дорогого* (утверждение спорное) постоянного магнита.

В этой части статьи поговорим об аспектах согласование регулятора громкости Никитина с усилителем.
Для получения заявленных параметров, снижения искажений и обеспечения плавности регулирования громкости регулятор Никитина обязательно должен быть согласован с входным сопротивлением усилителя!

Рассмотрим по порядку:

  1. Общие вопросы согласования регулятора.
  2. Согласование регулятора со схемами на ОУ и транзисторами.
  3. Согласование регулятора с ламповыми каскадами.

1. Общие вопросы согласования.

Для рассмотрения общих нюансов согласования регулятора громкости Никитина с усилителями обратимся к статье «Искажения, возникающие в каскадах на ОУ при регулировании уровня сигнала», автор В.А.Свинтенок.

Целиком приводить её не буду (кому интересно, тот легко найдёт её на просторах Интернета). В ней автор, проведя не совсем корректные и неполные эксперименты, подтвердил известный факт, что усилители в инвертирующем включении звучат лучше и имеют меньшие искажения, чем усилители в неинвертирующем включении. Эту особенность давно заметили и попытались объяснить Дуглас Селф и Николай Сухов (автор того самого «усилителя высокой верности»). Последний пришёл к выводу, что подобный эффект вызван тем, что в неинвертирующем включении переход б-э входного транзистора оказывается вне цепи общей отрицательной обратной связи, из-за чего не компенсируется ёмкость Миллера. Соответственно, для усилителя с полевыми транзисторами на входе подобный эффект либо значительно слабее, либо не наблюдается вовсе.

Та вот, в экспериментах описанных в статье поучаствовал и регулятор громкости Никитина. Порой, правда, не совсем корректно. Не понятно, зачем нужно было снимать характеристики ненагруженного регулятора??? Ещё раз повторю, что для обеспечения заявленных параметров (шаг регулировки, равномерность регулировки, диапазон регулировки и т.д.) регулятор обязательно должен быть согласован с нагрузкой !!!

Примечание: в указанной статье регулятор громкости Никитина чаще упоминается как «регулятор громкости лестничного типа» .

Итак, наиболее интересные и полезные выводы из статьи:

...Как было показано выше, неинвертирующее включение ОУ с резисторами на входах не позволяет реализовать предельный потенциал у большинства микросхем по нелинейным искажениям. Инвертирующее включение дает ряд лучших характеристик: меньшие нелинейные искажения, более короткий и «мягкий» спектр искажений, отсутствие «порога» (резкого возрастания высших гармоник в спектре), на искажения и спектр не оказывает влияние внутреннее сопротивление источника сигнала.

Стандартное построение регулятора уровня с буферным повторителем в инвертирующем включении представлено на Рис.15. На практике такая схема используется довольно редко и связано это со следующим. Чтобы сохранить входное сопротивление схемы на уровне значения сопротивления Rп и закон изменения сопротивления от угла поворота ручки потенциометра необходимо, чтобы для резисторов схемы выполнялось условие R > Rп (в 3 и более раз). Чтобы получить приемлемое входное сопротивление схемы приходится выбирать достаточно высокоомные резисторы R. А это ведет в свою очередь к повышенному уровню шума схемы.

Тем не менее, рассмотрим эту схему в качестве отправной схемы для этого типа включения.

Для схемы, представленной на Рис.15 максимальные искажения будут в верхнем положении движка потенциометра Rп и соответствуют повторителю в инвертирующем включении. Далее по мере снижения уровня сигнала на выходе потенциометра пропорционально начнут снижаться и искажения на выходе ОУ. В связи с чем, охарактеризовать поведение активного элемента в регуляторе достаточно описанием его в одной точке – в точке наблюдения максимальных искажений.

В Таблице 10 приведены коэффициенты гармоник для входного напряжения 2 и 4 вольта для инвертора собранного по схеме Рис.15 при номинале резисторов R = 5кОм и при коэффициенте передачи регулятора Кр = -1.

Таблица 10.

Таблица 10 (1)

Тип мс

OPA 2134

AD 8620

NE 5532

OP 275

U вх(в)

К г7 %(5к)

0,000066

0,000035

0,000062

Таблица 10 (2)

Тип мс

LME 49860

AD 8066

AD 826

JRC 2114

U вх(в)

К г7 %(5к)

0,000012

0,000032

0,000024

0,000092

0,000039

Таблица 10 (3)

Тип мс

THS 4062

AD 8599

LT 1220

AD 825

U вх(в)

К г7 %(5к)

Таблица 10 (4)

Тип мс

LME 49710

LM 6171

U вх(в)

К г7 %(5к)

0,000013

5,2*10 -6

Анализируя данные приведенные в Таблице 10 можно заметить, что выбор микросхем для построения регуляторов уровня сигнала с малыми искажениями значительно шире.

Лучшие микросхемы в этом включении LME49860 , LME49710 и AD8066 . Помимо прекрасных характеристик по нелинейным искажениям у них и прекрасный спектр искажений: 2 – 3 гармоники при входном напряжении четыре вольта.

Прекрасные характеристики и у JRC2114 , OP275 и NE5532 . Спектры у первых двух микросхем содержат 4 – 5 гармоник при входном напряжении 4 вольта, а вот у NE5532 он длинный, с провалом. Ее лучше использовать при входном напряжении меньше четырех вольт.

Хорошие спектры (четыре гармоники) при входном напряжении 4 вольта и у AD826 , THS4062 , LT1220 . Микросхемы OPA2134 , AD5599 и AD8620 лучше использовать при входном напряжении два и менее вольта. У LM6171 в инвертирующем включении искажения существенно выше, а характер и поведение спектра от напряжения питания такое же что и в неинвертирующем включении.

Как было выше сказано, на практике реализовать высокий потенциал по искажениям у данного типа регулятора проблематично из-за присущих этому включению недостатков. Так для получения входного сопротивления близкое к 10кОм необходимо в схеме инвертора выбирать довольно высокоомные резисторы (более 30кОм), что приведет к существенному росту шума регулятора и сократит количество микросхем способных на достаточно качественном уровне работать в этом включении. В значительной мере эти проблемы можно решить, если в этом включении использовать регулятор уровня сигнала «лестничного» типа...

…для осуществления этого необходимо нагрузочный резистор регулятора отключить от общего провода и подключить к инвертирующему входу ОУ, как это показано на Рис.16.

Все достоинства этого регулятора в таком включении сохраняются. При коэффициенте передачи регулятора 0дБ схема представляет собой инвертор с единичным усилением и с входным сопротивлением 10кОм. Максимальные искажения такого регулятора соответствуют и максимальному сигналу на входе инвертора и будут соответствовать значениям данных приведенных в Таблице 10. На входе регулятора можно включить RC цепочку для ограничения высоких частот без опасения увеличения нелинейных искажений. По мере снижения напряжения будут снижаться и искажения, что является нормальным и естественным свойством регулятора в этом включении.

Максимальный коэффициент ослабления сигнала и частотная характеристика определяются максимальным затуханием регулятора и его частотной характеристикой

Забегая несколько вперед, можно сказать, что это одно из лучших решений позволяющее получить минимально достижимые нелинейные искажения с «мягким» и коротким спектром. В этом включении достижимы искажения, не превышающие уровень единиц стотысячных при 4 вольтах на входе с монотонным снижением искажений по мере увеличения коэффициента затухания регулятора.

Единственно «не сильное» место регулятора – шумы. Они будут определяться резисторами (эквивалентное значение не более 6кОм) и коэффициентом передачи инвертора по шуму (равное двум)…

Надо также отметить, что в ходе экспериментов при неинвертирующем включении усилителя автором был выявлен рост искажений при увеличении монтажной ёмкости регулятора. Поэтому при сборке схемы в таком варианте следует уделить особое внимание элементам регулятора, их расположению и способу монтажа!

2. Согласование регулятора громкости Никитина со схемами на ОУ и транзисторах.

Пример согласования регулятора громкости Никитина с неинвертирующим усилителем:

увеличение по клику

Здесь входное сопротивление усилителя определяется значением резистора R11. Для согласования с регулятором громкости его номинал выбран 10 кОм. В случае необходимости получения большего усиления от ОУ можно увеличить номинал резистора R12.

Напомню, что в данной схеме не полностью реализуется потенциал операционного усилителя (по параметрам и качеству звучания) и схема довольно чувствительна к ёмкости (качеству) монтажа. Поэтому её рекомендуется использовать только в случае крайней необходимости.

При использовании ОУ в инвертирующем включении указанные выше недостатки устраняются:

увеличение по клику

Здесь входное сопротивление усилителя определяется номиналом резистора R11. Для согласования с регулятором громкости Никитина его значение выбрано 10 кОм.

Внимание! В приведенных схемах номиналы резисторов указаны для согласования регулятора громкости Никитина с нагрузкой 10кОм . Если регулятор рассчитан на другую нагрузку (например с помощью таблицы из ) номиналы указанных резисторов надо изменить на соответствующие.

Пример согласования регулятора с реальным усилителем:

на рисунке представлен входной каскад модернизированного усилителя мощности В.Короля:

Каскад выполнен по двухтактной схеме, и при идентичных параметрах комплиментарных транзисторов Т1 и Т2 за счёт взаимной компенсации базовых токов входное сопротивление такого каскада будет определяться, в основном, номиналом резистора R1.

Для согласования такого усилителя с регулятором громкости Никитина (на 10кОм) достаточно установить резистор R1 номиналом 10кОм:

увеличение по клику

3. Согласование регулятора громкости Никитина с ламповыми каскадами.

Подозреваю, что некоторым читателям входное сопротивление регулятора (10кОм) может показаться относительно низким. Хотя в большинстве современных аппаратов (звуковые карты, CD/DVD проигрыватели) на выходе стоят буферы, которые позволяют подключать нагрузку не менее 2кОм, однако…

Вдруг кто-то захочет нагрузить ламповый каскад на данный регулятор.

В этом случае, если на выходе отсутствует катодный повторитель, для согласования относительно низкого входного сопротивления регулятора с высоким выходным сопротивлением схемы (резистивного лампового каскада или SRPP) можно использовать буферный каскад, предложенный Зызюком (его надо включить между выходом лампового каскада и регулятором громкости):

Настройка схемы (выполняется при закороченном входе – свободный вывод С1 соединить с «общим» проводом схемы):

  1. резистором R4 выставляется ток покоя VT2 равный 35мА.
  2. резистором R1 выставляется «0» постоянного напряжения на выходе схемы.

При указанном токе и напряжениях радиаторы для транзисторов не требуются.

А ещё лучше будет использовать « », подобрав входное и выходное сопротивления.

Удачи в творчестве, качественного звука и работающих схем!

РЕЗИСТОРЫ ПОСТОЯННЫЕ

Прежде всего небольшая напоминалка об обозначениях резисторов:

Как и любой другой элемент у резисторов есть такой параметр как собственный шум, который складывается из теплового и токового шума.
Токовый шум обусловлен дискретной структурой резистивного элемента. При протекании тока возникают местные перегревы, в результате которых изменяются контакты между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) величина сопротивления, что ведет к появлению между выводами резистора ЭДС токовых шумов. Токовый шум, также как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот, и величина значительно превышает величину теплового шума.
Все эти эффекты зависят от плотности тока. Чем она больше, тем больше проявление этих неприятностей. Поэтому соединив 2 резистора параллельно (увеличив площадь сечения и уменьшив плотность тока) все эти эффекты уменьшаются. Тоже самое можно сделать взяв резистор большей габаритной мощности. У него сечение проводящего слоя больше и плотность тока в нем будет меньше. Соединив 2 резистора последовательно шумы суммируются, поэтому крайне не желательно использовать последовательное соединение резисторов в каскадах имеющих большой коф усиления. Суммарное сопротивление двух резисторов соединенных параллельно вычисляется по формуле:

Этот шум зависит от многих факторов, в том числе и от конструкции конкретного резистора, включая резистивный материал и в особенности концевые соединения. Вот типичные значения избыточного шума различных типов резисторов, выраженные в микровольтах на вольт приложенного к резистору напряжения (приводится среднеквадратичное значение, измеренное на одной декаде частоты):

Углеродно-композитные От 0,10 мкВ до 3,0 мкВ

Углеродно-пленочные От 0,05 мкВ до 0,3 мкВ

Металлопленочные От 0,02 мкВ до 0,2 мкВ

Проволочные От 0,01 мкВ до 0,2 мкВ

Однако не совсем ясно на каком основании были сделаны выводы о том,что С5-5 или С5-16 не содержат индуктивности и наиболее ярким примером является механическое вскрытие:

Наиболее приемлемым вариантом считается использование для этих целей резисторов МЛТ-2, однако шансы от избавления от индуктивности не сто процентны - на верхнем резисторе четко просматривается спираль из резистивного слоя:

Поэтому при покупке МЛТ-2 следует обратить внимание на их внешний вид, и если окажется, что резистивный слой в виде спирали это совсем не повод впадать в панику - да, будет иметь место индуктивность, но ее величина слишком мала - у представленного на фото резистора на 100 Ом индуктивность составила 70 мкГн, а для резисторов сопротивлением 1, 0,68, 0,47, 0,33 и 0,22 Ома оно будет в десятки раз меньше.

РЕЗИСТОРЫ ПЕРЕМЕННЫЕ

Кроме постоянных резисторов в усилителях используются переменные - для регулировки громкости, баланса, при необходимости тембра. От качества этих резисторов зависят в основном дополнительные шумы, вносимые изменяющимся сопротивление контакта между резистивным слоем и движком.

Кроме прочих параметров у переменных резисторов есть еще один - группа. Этот параметр показывает по какому закону изменяется сопротивление на движке резистора в зависимости от его положения, например для резисторов роторного типа это будет угол поворота. У отечественных резисторов различают 3 основные и две вспомогательные группы:

Группа А - линейная зависимость изменения сопротивления от положения движка, группа Б - логарифмическая зависимость, В - обратнологарифмическая. Самые популярные - "А" и "В". "А" используется для линейных регулировок, например в терморегуляторах, регуляторах оборотов двигателей. "В" - оптимальнейший вариант для регулировки громкости, поскольку человеческое ухо увеличение громкости воспринимает по логарифмическому закону. Вспомогательные группы И и Е обычно используются в паре на сдвоенных резисторах - один резистор группы "И", второй "Е", что делает такой резистор идеальным для регулировки баланса в стерео усилителях.
У импортных переменных резисторов 4 группы:

Тут сразу следует обратить внимание на то, что у импортных группа А имеет обратнологарифмическую зависимость, т.е. для регулировки громкости требуется как раз резисторы группы "А", а группа B имеет линейную зависимость. Группа W используется для регулировки баланса - обычно движок резистора соединяется с общим проводом, а резистивный слой выступает в роли аттенюатора, совместно с постоянными токоограничивающими резисторами.
На некоторых подвидах переменных резисторов, предназначенных для регулировки громкости делаются отводы от середины резистивного слоя, гораздо реже делаются отводы с соотношением 1/ и 2/3. Данные резисторы удобны для реализации тонкомпенсированных регуляторов громкости. Тонкомпенсация позволяет выравнять иллюзию изменения АЧХ тракта при малых и больших громкостях - на малой грокости кажется, что НЧ и ВЧ составляющие сигнала уменьшаются, поэтому и вводится подъем НЧ и ВЧ в самом регуляторе. Один из вариантов схемы тонкомпенсированного регулятора громкости и изменения его АЧХ приведены ниже:

Основных видов переменных резисторов две - роторные и движковые. И те, и другие имеют в своем составе множество подвидов, поэтому для краткости в таблице приведены только популярные:

Переменный резистор серии R12, бывают сдовоенные, бывают с выключателем. Ближайший сосед по конструктиву выполнен на текстолитовой основе. Широко используются в переносной аудиоаппаратуре. Бывают для вертикального и горизонтального монтажа. Надежность оставляет желать лучшего.

Серия R12XX - по конструктиву состоит из гетинаксовой "подковы" с нанесенным углеродистым резистивным слоем. Для большего понимая следйет расшифровать обозначение:
R - ROTOR, т.е. роторный, следующие две цифры обозначают диаметр , а вот дальше уже по спецификации. Бывают одинарные и сдвоенные. Широко используются в переносной аудиоаппаратуре и в автомобильной низкой ценовой категории. Бывают для вертикального и горизонтального монтажа.

Серия RK11ХХ, такого же конструктива серия RK14ХХ, бывают для вертикального и горизонтального монтажа, первые цифры после букв обозначают размер: , бывают сдвоенные и одинарные, в переносной аудиоаппаратуре не очень популярны, но попадаются.

RK12ХХ популярны в стационарной средней ценовой категории и переносной аппаратуре высокого класса, частенько мелькали в автомагнитолах. Бывают одинарные, сдвоенные, счетверенные. Размер подковы с резистивным слоем может достигать 24 мм, разумеется в названии первыми цифрами будет 24. Могут быть с выключателем, некоторые модели этого вида имеют отвод от середины.
Для увеличения надежности и уменьшения сопротивления между контактом движка и резистивным слоем лучше использовать резисторы бОльшего диаметра, если нет ограничений по габаритам.

Переменные резисторы движкового (ползункового) типа содержат в своей абривиатуре либо первую, либо вторую букву S - SLIDE. Бывают одинарными, сдвоенными, с отводом от середины и без него. Первые две цифры после букв обозначают длину хода движка, например у верхнего SL101 движок перемещается на 10 мм, а у нижнего SL20V1 - 20 мм. Обычно в среднем положении движок резисторов слегка фиксируется.

Потенциометры DACT и ALPS по конструкции представляют собой многопозиционный галетный переключатель с установленными SMD резисторами.

Номиналы резисторов обеспечивают обратнологарифмическую зависимость изменения сопротивления при повороте оси потенциометра. Контакты движка и "подковы" выполнены из материалов повышенной износостойкости и обеспечивают наилучший контакт на протяжении ОЧЕНЬ продолжительного времени. Разумеется стоимость подобных потенциометров довольно высокая.

Есть еще одна группа потенциометров, которую можно назвать "удачной", причем в прямом смысле этого слова - это потенциометры снятые со старых усилителей мощности нулевой группы сложности. Буквально два месяца назад был УДАЧНО приобретен такой потенциометр у дедуни-старьевщика всего за 50 рублей. Замасленен, запылен, но контакты в ОЧЕНЬ хоршем состоянии.
Здесь рассмотрены резисторы наиболее популярные.

ПРОВОДА И РАЗЪЕМЫ

После того как все платы готовы, проверены и вымыты их необходимо установить в корпус и соединить между собой, а для этого требуются провода и "соединители".
Наилучшим соединением является пайка, но это далеко не всегда удобно, да пайка бывает разная.
Если используется соединение пайкой, то для пайки необходим припой. В радио-электронной аппаратуре (РЭА) используются свинцово-оловянные припои трех основных марок:
ПОС-40 - содержит 40 % олова и 60 % свинца, используется... Да лучше бы не использовался...
ПОС-60 - самый популярный припой, используется для монтажа элементов РЭА, содержит 60 % олова и 40 % свинца. Имеет хорошую растекаемость, находясь в жидком состоянии, со временем может приобрести оксидную пленку и стать матовым;
ПОС-90 - припой состоящий из 90 % олова и почти 10 % свинца (остальное на технологические примеси). Довольно часто называется пищевым, поскольку содержание свинца минимально и может использоваться для пайки бытовых предметов, контактирующих с пищей. Качество пайки довольно высокое, но необходимо несколько большая температура паяльника. Медное жало паяльника выгорает гораздо быстрее, чем при использовании ПОС-60. Поверхность ПОС-90 практически не окисляется от влаги.
Есть еще один вид припоя, именуемый безсвинцовым или экологически чистым. Химический состав искать даже не захотелось - этой светлосерой субстанцией запаяно большинство электронных приборов низкой ценовой категории, имеет более высокую температуру плавления, по сравнению с ПОСами, находясь в жидком состоянии имеет низкую смачиваемость, что затрудняет облуживание выводов электронных компонентов и снижает качество пайки. Механические свойства на уровне ПОС-40.
При пайке практически всегда используются флюсы - вещества создающие на поверхности спаиваемых деталей тонкую пленку, предохранающую от окисления, которое при высоких температурах происходит гораздо быстрее. Химических составов флюсов довольно много, большинство основано на обычной сосновой канифоли, которая может использоваться при пайке и сама по себе.
Для улучшения качества пайки рекомендуется зачищенные жилы многожильных проводов свить как можно плотней между собой - таким образом создается максимально возможное количество точек соприкосновения, существенно уменьшающих сопротивление контактов.
Использовать разъемы в силовой части усилителя крайне не желательно, даже если они самозажимные или винтовые. Подобное соединение автоматически удваивает количество соединений:
1. Разъем припаивается к плате;
2. Провод прикручивается к разъему
Если же используются раъемы имеющие "папу-маму", то количество соединений утраивается:
1. Разъем "папа" припаивается к плате;
2. Точка контакта ответных частей "папа-мама";
3. Разъем "мама" припаивается к проводам
Конечно же разъемы существенно упрощают доступ с модулям устройства, но они же и снижают надежность, поэтому разъемы лучше использовать только на слаботочных цепях и сократить их количество до минимально возможного.
Разумеется, что можно возразить - мол достаточно много устройств собирается на разъемах и ни чего страшного не происходит.
Ну для начала следует осознать, что при сборке в заводских условиях далеко не последнее место занимает технологичность - удобство сборки для повышения количества выпускаемой продукции и уж потом рассматривается надежность используемых соединителей.
С другой стороны "ни чего страшного" не происходит:

ПРОВОДА

В усилителях провода можно разделить на две основные группы - сигнальные и питания, причем под питание можно определить и провода, по которым производится управление, например реле селектора входов. Сигнальные провода это провода по которым собственно и проходит звуковой сигнал от входа до выхода.
В низковольтной сигнальной части усилителя лучше использовать экранированные провода, причем лучше в изоляции, поскольку эранированный провод без изоляции может соприкаснуться с корпусом, ражиатором и т.д., что неизбежно повлечет создание "земляной петли" - эффекта возникающего за счет соединения общего провода в разных точках и дающего возможность образования рамочной антенны, собирающей многие наводки и импульсные помехи.
Однако экранированные провода тоже бывают разными и самые доступные это так называемый "НЧ провод для видео", продается либо сдвоенным, либо счетверенным.

Перед покупкой лучше произвести небольшое анатомическое вскрытие и убедится, что провод является проводом, а не жалкой пародией на него, да еще и сделанной из какого то сталистого сплава, который ОЧЕНЬ тяжело паяется:

Провод должен иметь однородную изоляцию центральной жилы и довольно плотную, эластичную и не крошащуюся оплетку:

Причем чем плотнее оплетка тем лучше, в идеале жилы оплетки должны быть сплетены в сетчатую трубку, но в последнее время такой провод попадается довольно редко:

Ну совсем хорош провод "микрофонный", сильно напоминающий кооксиальный кабель, с однородной, довольно толстой изоляцией центральной жилы, существенно снижающей емкость кабеля и плотной оплеткой. Довольно часто попадаются "микрофонные" провода эконом-класса, в которых жидкая оплетка, но экранировка сохраняется за счет использования фольги.

В качестве проводов питания и управления лучше использовать медный многожильный провод из расчета 4-5 А на мм кв. Теоритически можно использовать и большую напряженость - провод будет успевать остывать, но только сильно заниженное сечение будет способствовать бОльшему падению напряжения, следовательно напряжение питания будет сильно зависеть от протекающего тока.
Для предварительных каскадов это, теоритически, не так критично - они потребляют не большие токи и компенсировать падение можно увеличением емкости конденсаторов фильтра питания, установленных непосредственно на плате модуля. Однако имеет ли смысл бороться с проблемой, если есть возможность обойти ее?
Для оконечных каскадов провалы питания более болезненны - мало того, что при пике музыкального сигнала происходит разрядка конденсаторов фильтра питания, которых обычно минимальная достаточность, так еще и тонкие провода создают дополнительный провал напряжения. Отсюда и возникает более раний клиппинг, который уже будет слышно.
Кроме питания к силовым проводам можно отнести провода выходящие непосредственно с выхода усилителя мощности, идущие на клеммы подключения, а дальше уже непосредственно на АС.
Вот тут уже возникает точка споров и недоразумений, поскольку практически все рекомендуют использовать для этих целей акустический провод (безкислородную медь), но вот причины называются порой самые абстрактные.
Тут следует остановиться подробней на самых популярных:

Меньшее активное сопротивление

Проволока медная изготовляется следующих марок:

Теоритически вроде как все верно, но...
,
где R - сопротивление проводникового материалла (ом)
l - длина провода в метрах
p - электрическое удельное сопротивление материала
A - площадь поперечного сечения
ПИ - математическое число
d - номинальный диаметр провода в миллиметрах
Берем 10 метров сечением 1,5 мм кв получаем сопротивление для безкислородной меди 0,1147 Ома, для обычной 0,12 Ома. Даже при нагрузке в 2 Ома отношение сопротивлений более чем в 16, однако ни какой нормальный человек для двухомного динамика не будет использовать сечение 1,5 мм кв - минимум 2,5 мм кв.

Снижение СКИН-ЭФФЕКТА

Разумеется, что на высоких частотах электроны выталкиваются к поверхности проводника и толщина скин-слоя для частоты 100 кГц составляет 0,2 мм. Однако наличие множества НЕ ИЗОЛИРОВАННЫХ между собой жил в проводе делает его ОДНИМ проводником, диаметр которого пропорционален суммарному сечению, а не сечению каждой жилы. Акустический кабель, действительно компенсирующий СКИН ЭФФЕКТ выглядит несколько иначе, чем его привыкли представлять в перефирийных аудиомагазинах:

Стоимость этого кабеля будет совсем не маленькой. Впрочем о стоимости - здесь еще есть зависимость от того, где собственно этот кабель покупать. Для примера две цены одного и того же кабеля:

В аудиомагазине стоимость провода составляет 96 рублей за метр, а в магазинах, занимающихся теплыми полами и прокладывающих под полами акустический кабель в виде допуслуги не превышает 20 руб за метр.
Выйти из сутуации можно, если уж ОЧЕНЬ хочется получить кабель без СКИН-ЭФФЕКТА - изготовить его самостоятельно из медного обмоточного провода ПЭВ-1 (ПЭВ-2 тоже подойдет, если стоит одинаково). Провод вымеряется необходимой длины и складывается в необходимое количество жил из расчета 30 Вт выходной мощности усилителя на 1 мм кв сечения провода. Затем жгут свивается, но не плотно и обматывается по всей длине киперной лентой:

После этого обе жилы, идущие на АС обматываются изолентой, можно отдельно, можно сразу две. Столь тщательная изоляция необходима для уменьшения емкости между проводами и улучшения механических свойств изоляции - лак на проводе не очень прочен.

Из личных впечатлений:
По сравнению с обычным акустическим кабелем самодельный выигрывает в области ВЧ и это проявляется наиболее ярко при мощностях выше 100 Вт.
Однако звук гораздо приятней при использовании широкополосной динамической головки и усилителя в режиме "Источник Тока, Управляемый Напряжением" (ИТУН). При использовании дополнительного блока, именуемого "Компенсатором Длины Провода" (КДП) звук так же отличался в лучшую сторону.

Причем усилители с ИТУН и КДП подключались проводом ПВС 2х2,5, а типовой усилитель акустическим магазинным и самодельным:

И ЧЕ ТЕПЕРЯ?!

Для начала подумать, ведь у безкислородной меди есть один довольно серьезный плюс - она оксиляется не так интенсивно, как ПВС, следовательно ее можно использовать там где имеет место повышенная влажность. Толщина и прочность изоляции гораздо выше, чем у ПВС, следовательно с ним можно обращаться не так бережно, а и в случае прокола изоляция стремится "затянуться". Акустический провод гораздо мягче ПВС, следовательно его можно использовать там, где гибкость провода имеет значение в силу труднодоступности мест укладки.
Вывод напрашивается сам собой - акустический провод идеален для использования в автомобильном аудио и на гастролях. В бытовых комплексах можно обойтись и ПВС, причем даже увеличение сечения даст некоторую экономию по сравнению с акустическим меньшего сечения.
В защиту ПВС можно еще сказать, что разные производители для производства провода используют жилки разного диаметра - им главное выдержать площадь сечения. Следовательно просмотрев провод в нескольких конкурирующих магазинах можно выбрать провод с более тонкими жилками, следовательно более мягким.

Ну и конечно же смотреть что именно вы собираетесь купить, чтобы не получилось недоразумения, предлагаемого - на фото одно, а продают совсем другое, если Вам внушают, что провод избавлен от скин-эффекта, то помните, что такой кабель выглядит несколько иначе:

Литература:
http://www.electroclub.info
http://dart.ru
http://www.magictubes.ru
http://easyradio.ru
http://people.overclockers.ru
http://tech.juaneda.com
http://rexmill.ucoz.ru
http://ivatv.narod.ru/
http://irbislab.ru
http://www.audio-hi-fi.ru
http://diyfactory.ru
http://www.diyaudio.ru
http://www.bluesmobil.com
http://rezistori.narod.ru
http://sgalikhin.narod.ru

Как-то так получилось, что при всем большом количестве обзоров я практически ни разу не писал обзоры устройств, тем или иным образом относящихся к аудиотехнике. Хотя конечно у меня есть обзор блока питания для усилителя мощности, но на мой взгляд это уж совсем косвенное отношение. И вот решил я обратить внимание на усилители, ЦАПы и прочие аудиоустройства и начну с регулятора громкости.
Данный регулятор громкости выбирался скорее из эстетических соображений, так как функционально он очень прост и потому обзор будет сегодня не очень длинным.

Как вы уже поняли из предисловия, строить я буду некое подобие усилителя, скорее всего с ЦАП, но в данном случае это не особо принципиально. Раньше я много занимался подобной техникой, но прошли годы и одно просто забылось, вместо другого появилось много нового, потому отчасти я буду вспоминать, отчасти заниматься самообразованием потому возможны ошибки и неточности, за что заранее прощу извинить.

Тема аудиотехники была косвенно затронута в , где я показывал блок питания для усилителя мощности. Скорее всего этот БП будет и дальше принимать участие, вероятнее всего в качестве подопытного для понимания разницы между импульсным и обычным блоком питания, но это тема будущих обзоров, а пока перейду к теме сегодняшнего - регулятору громкости.

Понятно что сейчас громкость звука можно регулировать не только вмешательством в электрический тракт, а и программно прямо от источника, но лично мне не очень нравится подобный подход и я придерживаюсь «классических» решений в виде аналогового регулятора громкости.

Для начала стоит сказать, что регуляторы громкости бывают линейные и логарифмические, а также с тонкомпенсацией, касаться их я не вижу смысла так как это скорее дело вкуса, но объясню очень кратко:

1. Линейный или логарифмический.
Линейный изменяет коэффициент деления прямо пропорционально углу поворота вала регулятора.
Логарифмический (а если корректнее, то обратнологарифмический) больше подходит для человеческого слуха так как в самом начале регулировка происходит очень плавно, а к концу более резко. Человеческое ухо лучше отличает уровень громкости слабых звуков, потому в самом начале регулировка плавная. Когда же громкость большая, то разница менее заметна и там регулировка может быть грубой.

Существует три основные характеристики:
А (в импортном варианте В) - линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) - логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) - обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип - W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении.

2. Тонкомпенсация.
При слабом уровне громкости человеческое ухо лучше слышит СЧ диапазон, но хуже НЧ и ВЧ, потому в некоторые регулятора добавляют принудительную коррекцию АЧХ в самом начале регулировки. Обычно тонкомпенсация отключаемая, так как далеко не всем она нравится и тогда есть возможность случать оригинальный звук. Простейшая тонкомпенсация это конденсатор небольшой емкости между входным сигнальным и подвижным контактом резистора. В более «продвинуты» резистор имеет один или несколько отводов, позволяющих настроить коррекцию более точно.

Для лучшего понимания были построены семейства кривых чувствительности человеческого уха – усредненные графики зависимости этой чувствительности для разных частот слышимых акустических колебаний.

На рисунке ниже показаны эти графики, получившие название кривых равной громкости, которые были приняты в качестве международного стандарта.

Вариант включения обычного переменного резистора для получения тонкомпенсации.

И включение специального резистора.

В моем случае по большей части можно было просто применить обычный переменный резистор. Ниже на фото пример простых переменных резисторов, слева подороже, справа попроще, но суть у них одна и та же, переменный резистор. Качественные переменные резисторы выпускает фирма Alps и стоят они весьма недешево.

Но куда более качественный вариант, это ступенчатый регулятор в виде набора переключаемых резисторов. Фактически это многоступенчатый аттенюатор, преимуществом которого является задание произвольных регулировочных характеристик, но что важнее - более точной подгонкой идентичности каналов.
Существуют обычные переменные резисторы с трещеткой, не путайте, это совсем другое, по сути там просто «эмуляция».

Ступенчатые регуляторы чаще всего применяются в высококлассной аппаратуре, например я впервые его встретил в популярном усилителе Одиссей 010. Кстати, при желании и некотором терпении подобный регулятор можно изготовить самостоятельно из многопозиционного переключателя и подобранных резисторов.

Или даже так, по сути просто переключатель с кучей резисторов.

Если заменить переключатель на реле, то можно сделать более красивое решение, к тому же имеющее возможность дистанционного управления. В целях упрощения резисторы в этом случае управляются двоичным кодом. Путем коррекции номиналов резисторов можно также задавать логарифмическую характеристику.
Переключая коэфициент деления при помощи фиксированных резисторов можно получить относительно простым способом большой диапазон регулировки, 1 реле - 2 уровня, 2 реле - 4 уровня, 3 реле - 8 уровней.
Ниже на фото показан регулятор имеющий 256 ступеней регулировки. Управляется он от специальной микросхемы - которая преобразует аналоговый сигнал от переменного резистора в двоичный код. Переменный резистор при этом просто изменяет постоянное напряжения и никак не подключен в цепи сигнала.
Реле при этом надо применять специальные - сигнальные, а не силовые, так как при слабых напряжениях и токах силовые реле не могут обеспечить качественный контакт.
Но кроме того у подобного регулятора есть преимущество, его легко можно сделать многоканальным просто добавив параллельно еще одну плату с реле.

Снизу платы видны пары резисторов около каждого реле. Вообще изначально у меня была мысль купить именно такой регулятор, но потом я передумал и позже объясню, почему.

Примерно по такой же схеме собран и известный регулятор Никитина, его преимущество в том, что входное и выходное сопротивление всегда постоянно, что лучше сказывается на качестве работы и меньшем влиянии на параметры остальной схемы.

Как было написано выше, ступенчатые регуляторы позволяют реализовать дистанционное управление, но при желании можно купить и обычный регулятор «с моторчиком», управляемым специальным контроллером. Фактически так и есть, вал переменного резистора можно вращать как вручную, так и с пульта, тогда это будет делать небольшой двигатель с редуктором, при этом ручка регулировки также будет вращаться, а если добавить к ней какой нибудь светодиод индикации положения, то смотрится это довольно эффектно.

В общем думал я думал, какой регулятор применить и случайно натолкнулся на весьма любопытный вариант, который меня больше заинтересовал типом дисплея, но об этом чуть позже.
В комплект входит:
1. Плата регулятора
2. Плата управления с дисплеем
3. Пульт ИК ДУ
4. Светофильтр
5. Провода подключения питания и выхода
6. Шлейф для соединения плат, длина 280мм
7. Ручка регулятора.

Также отдельно можно докупить
1. Трансформатор питания 12 Вольт 5 Ватт - $2.22
2. Плата управления нагрузкой - $3.7
3. Доплатить за позолоченные RCA разъемы - $1.47

Я покупал в «базовой» комплектации так как трансформатор у меня есть, плату реле можно сделать самому, а в «позолоченные» разъемы за полтора бакса я мало верю. Волновался чтобы в пути не разбили дисплей, но все обошлось.

Комплект всяких мелочей ничего особенного из себя не представляет, синий светофильтр, дешевенькая ручка и пара проводков.
Защитную бумагу со светофильтра я пока снимать не буду так как мне его еще ставить в корпус и не хотелось бы поцарапать.

Пульт похоже от какого-то телевизора AOC, в меру удобный, но имеющий глянцевый корпус. Смотрится неплохо, хотя кнопок могло бы быть и меньше так как большая часть из них не нужна.
Входы можно переключать как кнопкой Input 1-2-3-4, так и кнопками Bright в любом направлении.

Основная плата, на ней расположены реле, регулятор и узел питания всего комплекта.

Не знаю что подразумевалось под «позолоченными» разъемами, за которые надо было доплатить отдельно, но я получил с такими как на фото. Плата умеет коммутировать сигналы от четырех источников, все входы вынесены на один большой блок разъемов.

Пайка местами на троечку, хотя общее качество изготовления понравилось, аккуратно, есть крепежные отверстия, маркировка.

Плата питается переменным напряжением 12 Вольт, хотя у меня она без проблем работала и от 9. На некоторых конденсаторах имеется маркировка фирмы Elna, хотя на мой взгляд в данном случае это не имеет значения, не говоря о том, что китайцы те еще затейники и верить таким маркировкам можно далеко не всегда.
Также судя по всему на плате есть и умножитель напряжения так как дисплею требуется заметно больше чем 12-15 Вольт. Но в умножителе нет ничего плохого, хуже было бы если разработчик поставил импульсный преобразователь напряжения.

Также здесь установлены четыре стабилизатора напряжения, два (78L05 и 79L05) питают регулятор, один 7805 питает реле, второй отвечает за плату управления.

А вот и регулятор с четырехканальным коммутатором.

Регулировкой уровня сигнала занимается специализированный чип производства Cirrus logic. В начале обзора не были указаны характеристики регулятора, но так как фактически они зависят от данного чипа, то корректнее привести их именно в таком виде. Хотя корректность это понятие относительное, так как они относятся к оригинальному чипу, а какой стоит здесь, я сказать не могу.

Выше я не зря писал о ступенчатых регуляторах сигнала. Дело в том, что данный регулятор также ступенчатый. На блок схеме красным выделен узел аттенюатора, т.е. делителя, а зеленым - регулируемый усилитель.
В отличии от обычного переменного резистора регулятор умет работать в двух режимах, ослабления (-95.5 дБ - 0) и усиления (0-31.5 дБ), за ослабление отвечает аттенюатор, а за усиление - усилитель с изменяемым коэффициентом усиления.

Схема включения регулятора предельно проста, потому собственно и определяются характеристики набора именно характеристиками чипа, хотя некоторые параметры можно при желании испортить неправильной трассировкой.
Изначально регулятор двухканальный, но судя по даташиту он допускает каскадирование и его можно применять и в многоканальных системах, нужен просто еще один или несколько таких чипов.

На плате находится разъем для подключения панели управления, а также неизвестный мне чип со стертой маркировкой.

Как было указано выше, плата может управлять включением дополнительной нагрузки. Для этого на плате имеются контакты подключения реле. На этих контактах появляется 5 Вольт при включении регулятора в рабочий режим, коммутация по минусу.
Данный выход можно использовать для управления подачей питания на усилитель мощности.

1. Чип регулятора CS3310
2. Транзисторная сборка ULN2003 для управления реле, она же управляет и дополнительным выходом.
3. Сигнальные реле на напряжение 5 Вольт. Где-то дома должны быть такие же реле, только фирменные, может сравню позже.
4. Неизвестный мне чип, зачем стерли маркировку - загадка.

Снизу платы пусто, большая часть полигонов используется как экран от помех.

Так как чип регулятора имеет цифровое управление, то в комплекте идет плата управления и индикации.

Управление соответственно может быть как от энкодера, так и от пульта, для этого на плате установлен фотоприемник, по понятным причинам светофильтр должен захватывать и его.

А это то, из-за чего я отчасти остановил свой выбор именно на данной модели регулятора, VFD дисплей, или по нашему ВЛИ (Вакуумно Люминесцентный Индикатор).
Собственно из-за этого данную плату можно назвать «теплой и ламповой», так как ВЛИ это и есть самая настоящая радиолампа, правда не имеющая никакого отношения к звуку. Дисплей правда здесь самый обычный, подобные применяются в калькуляторах и подобных устройствах где достаточно 9 знакомест.

Скажу честно, мне действительно нравятся подобные вещи и я бы не отказался от подобных дисплеев, но в виде аналогов обычным 1602, 2004 и т.п., но стоят они обычно , правда и смотрятся красиво.

Контроллер управления и прочие элементы вынесены на обратную сторону платы, а сама плата выполнена в том же дизайне что и плата регулятора. Правда есть замечание, плата не совсем ровная, она немного выгнута в сторону от передней панели.

Контроллер управления регулятором и драйвер дисплея.

На плате имеются контакты для подключения внешней клавиатуры и месте для перемычек.
1. Зеленый - клавиатура - выключение звука, выбор входа, регулировка громкости. В отличии от энкодера здесь есть функция выключения звука, но нет кнопки выключения.
2. Красный - режим работы полный (аттенюатор + усилитель) или только аттенюатор.
3. Желтый - отключение функции запоминания настроек.

1. Микроконтроллер управления - 12C5A60S2
2. Драйвер дисплея -
3. EEPROM, предположительно для хранения настроек.
4. Пайка фотоприемника. сначала решил что все плохо, но позже выяснилось что такой вид только снизу, сверху пайка отличная.

Чтобы проверить регулятор, подключил трансформатор питания 9 Вольт, соединил шлейфом платы и… все, можно включать.

Со вспышкой, да без светофильтра пытаться что либо разглядеть на дисплее нереально, хотя здесь я даже подкорректировал изображение в фотошопе.

Без вспышки или с каким нибудь светофильтром все заметно лучше, сам по себе индикатор весьма яркий.

На странице товара есть примеры применения данного регулятора, а точнее - оформления передней панели с ним, хотя в некоторых вариантах применен явно другой светофильтр, заметно более длинный.

Я же пока временно ограничился кусочком зеленого светофильтра, который нашел дома и ниже расскажу о режимах работы.
1. Выключено, на дисплее светится только точка правого разряда.
2. После короткого нажатия на энкодер регулятор переходит в основной режим работы, при этом на дисплей вылазит надпись Hello, которая затем пропадает. Выше я писал что у платы есть выход включения дополнительной нагрузки, на нем питание появляется сразу после нажатия на энкодер. При подаче питания на плату, она кратковременно щелкает релюшкой, в дежурном режиме все реле отключены. Для перевода платы в дежурный режим надо удерживать энкодер нажатым примерно пару секунд.
3. На дисплей выводится номер включенного канала и уровень ослабления/усиления сигнала.
4. Если на время замкнуть контакты Mute, то в поле уровня выводятся прочерки, повторное замыкание контактов опять включает звук.
5, 6. Минимально может быть -96 дБ, максимально +31.5 дБ. В даташите был указан диапазон -95.5 - +31.5 дБ.

И вот в последнем показанном пункте и кроется небольшая засада, полный диапазон регулировки составляет 256 уровней, а так как энкодер имеет 20 положений на один оборот, то для перехода от минимума до максимума надо сделать почти 13 полных оборотов. Я конечно люблю плавную регулировку, но всему есть свои пределы… На мой взгляд достаточно 30 ступеней регулировки, ну если хочется плавности, то 60-65, но 256…

Немного улучшить ситуацию позволяет отключение встроенного усилителя, это дает два положительных момента:
1. Усилитель меньше вносит искажений в сигнал (предположительно)
2. Вместо 256 ступеней будет «всего» 192 или 9.5 оборотов энкодера.

Еще увеличить удобство можно заменой энкодера на вариант с 24 положениями, тогда будет уже только 8 оборотов.

Если удалить перемычку Р5, то встроенный усилитель отключится, а максимально на дисплее будет уже 00.0, а не 31.5. Также на фото видны разные варианты включенных входов, 1 и 4. Входы переключатся коротким нажатием на энкодер.
Память режимов есть, но после полного снятия питания регулятор включится в режим который был перед корректным отключением, раздельной памяти на каждый вход нет, уровень громкости один на все входы. Если запаять перемычку блокировки памяти, то при каждом включении будет активирован первый вход и уровень сигнала -46.0 дБ.

Из-за того, что дисплей включен всегда, то потребление от режима работы почти не меняется, 187 мА в дежурном и 236 мА в рабочем режиме. Потребление указано по переменному току, мощность около 1.7 и 2.2 соответственно.

Естественно была проведена небольшая проверка, но по большей части я скорее уперся в возможности моих измерительных приборов и в частности - осциллографа. Для регулятора громкости ключевым является обычно линейность регулировки, вносимые искажения и разделение каналов, но я как-то даже не знаю как проверить все это при помощи одного генератора и простенького осциллографа. При входном напряжении 2.65 Вольта и уровне -70 дБ вольтметр показывает на выходе около 1мВ.

Для теста использовался полностью аналоговый генератор 10 Гц - 100 кГц и осциллограф DS203.
Сначала проверил как выглядит картинка на частоте 10 Гц.
1. Входной сигнал

3. Выходной сигнал на уровне +8.5 дБ
4. На уровне +9.0 дБ началось ограничение, но оно определяется размахом входного сигнала.
5. Уровень -45 дБ
6. Уровень -30 дБ

Частота 20 кГц.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +12 дБ
4. Так как размах входного сигнала здесь меньше, то ограничение началось на уровне +12,5 дБ, при дальнейшем увеличении усиления сигнал постепенно превращается в прямоугольник.
5. Уровень -45 дБ
6. Уровень -30 дБ

Максимум что умеет мой генератор - 100 кГц, на этой частоте я также решил проверить.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +11,5 дБ
4. Выходной сигнал на уровне 12.5 дБ, при 12.0 дБ ограничение было почти незаметно потому я выбрал 12.5 для наглядности.

Так как усилители мощности пока не готовы, ЦАП вообще еще не приехал, то пробовал немного с этим усилителем, работает нормально, по крайней мере единственный исправный канал:)
Собственно говоря именно этот усилитель я и буду переделывать, понимаю, явно не Одиссей, но что имеем. Хотя если учитывать что от него по сути останется только корпус, ну возможно еще трансформатор и радиатор, то не думаю что это важно, хотя у того же Одиссея вид и конструкция куда как более солидная.

Пока вкратце могу сказать, что все работает, в этом плане нареканий у меня нет. Звук регулируется, пульт работает, дисплей отображает всю необходимую информацию, искажений звука не замечено. Отмечу отсутствие импульсных преобразователей для питания дисплея, хотя индикация все равно динамическая, но в данном случае это ограничение самого дисплея.
Но есть и недостаток, слишком плавная регулировка сигнала, потому я скорее всего заменю энкодер и отключу встроенный усилитель.
Кроме того хотелось бы иметь раздельную регулировку уровня громкости для каждого входа, но это уже скорее к разряду «хотелок», потому как обычно такое не используется.

Общее качество изготовления неплохое, откровенных косяков не наблюдаю. Оригинальность чипа регулятора проверить не могу, увы.

Спонсором данного обзора выступил посредник , который взял на себя оплату доставки.
Стоимость комплекта вместе с доставкой к посреднику выходит $30.66, стоимость доставки от посредника зависит от разных факторов. Весит набор 364 грамма, информация со страницы заказа у посредника.

На этом у меня пока все, как обычно жду вопросы, советы, пожелания и тому подобное, надеюсь что обзор был полезен.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +32 Добавить в избранное Обзор понравился +88 +128

Традиционно для регулировки уровня звука используют переменный резистор - потенциометр , где изменение сопротивления реализуется с помощью электрического контакта, что скользит по резистивному слою. Примером хорошо известных регуляторов аудио-класса являются японские ALPS . Однако мало кто знает, что ими выпускаются и дискретные ступенчатые регуляторы, которые ставят в том числе в high-end аппаратуру. Это устройство состоит из серии постоянных резисторов, которые переключаются по очереди.

Несмотря на более сложное устройство и конструкцию, они имеют определённые преимущества по сравнению с плавно крутящимся потенциометром, это улучшение качества электрического контакта, в сравнении с ползунком. Улучшенная согласованность между отдельными аудиоканалами и они менее чувствительны к пыли и потертостям. В таком РГ практически исключается треск и шорох. Дискретный регулятор уровня звука практически не изменяет частотную характеристику при регулировании громкости, что положительно сказывается на линейности всего усилительного тракта, на всех уровнях громкости. Цена на них, естественно, гораздо выше, чем на обычные, но мы и не собираемся их покупать, а попробуем сделать сами.

Схема дискретного регулятора громкости

Три варианта схем ДРГ

Выше показаны три практические схемы такого регулятора, которую можно собрать самому. Сколько выбрать ступеней переключения - решайте сами. На практике достаточно 5-10. Резисторы желательно брать качественные, на мощность 0,125-0,25 ватт.

Естественно нужен сдвоенный переключатель, чтоб одновременно регулировалась громкость на обеих каналах стереоусилителя. Сам дискретный переключатель рекомендуется экранировать, чтоб свести уровень электромагнитных помех к нулю. Если вы взяли переключатель со слишком тугим ходом (чем грешат многие советские), разберите его и ослабьте пружину. Заодно почистите контакты мягкой ученической резинкой.