Индукционные лампы характеристика индукционных ламп. Индукционные светильники: принцип устройства и работы ламп. Индукционные лампы, обусловленные разной установкой генератора

Что такое индукционное освещение?

Индукционное освещение - это система новых технологий, которая сохраняет больше энергии и служит намного дольше, чем H.I.D. и энергосберегающие лампы. Это основывается на уникальном физическом принципе генерации света. Индукционные лампы - прорыв для профессионального и специального освещения. В индукционных лампах нет электродов благодаря чему достигается беспрецедентный срок службы в 100.000 часов. Все это сочетается с отличным качеством освещения и энергоэффективностью.

Принцип работы

Индукционная лампа состоит из трёх основных частей: газоразрядной трубки, внутренняя поверхность которой покрыта люминофором, магнитного кольца или стержня (феррита) с индукционной катушкой, электронного балласта (генератора высокочастотного тока). Возможны два типа конструкции индукционных ламп по виду индукции:

  • Внешняя индукция: магнитное кольцо расположено вокруг трубки.
  • Внутренняя индукция: магнитный стержень расположен внутри колбы.

Два типа конструкции индукционных ламп по способу размещения электронного балласта:

  • Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).
  • Индукционная лампа с встроенным балластом (электронный балласт и лампа находятся в одном корпусе).

Электронный балласт вырабатывает высокочастотный ток, протекающий по индукционной катушке на магнитном кольце или стержне. Электромагнит и индукционная катушка создают газовый разряд в высокочастотном электромагнитном поле, и под воздействием ультрафиолетового излучения разряда происходит свечение люминофора. Конструктивно и по принципу работы лампа напоминает трансформатор, где имеется первичная обмотка с высокочастотным током и вторичная обмотка, которая представляет собой газовый разряд, происходящий в стеклянной трубке.

Характеристики

  • Длительный срок службы: 60 000 - 150 000 часов

(благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных источников света)

  • Номинальная светоотдача лмВт
  • Фотопическая эффективность (воспринимаемая глазом): 120 - 180 Флм/Вт (Данный параметр часто используется специалистами для качественной оценки источника света и способности восприятия света и оттенков цветов человеческим глазом. Например, натриевая лампа высокого давления имеет номинальную светоотдачу 70-150 лм/Вт, но реально воспринимается как источник света со светоотдачей 40-70 Флм/Вт)
  • Высокий уровень светового потока после длительного использования

(после 60 000 часов уровень светового потока составляет свыше 70% от первоначального);

  • Энергоэффективность: имеет большую эффективность по сравнению с лампами накаливания, электродными газоразрядными, электродными люминисцентными, светодиодами (кроме светодиодов ведущих производителей)
  • Отсутствуют термокатоды и нити накала
  • Мгновенное включение/выключение

(отсутствует время ожидания между переключениями, что является хорошим преимуществом перед ртутной лампой ДРЛ и натриевой лампой ДНаТ, для которых требуется время выхода на режим и время остывания 5-15 минут после внезапного отключения электросети)

  • Неограниченное количество циклов включения/выключения
  • Индекс цветопередачи (CRI): Ra>80

(комфортное освещение, мягкий и естественный излучаемый свет, что благоприятно сказывается на восприятии оттенков цветов, в отличие от натриевых ламп (Ra>30), которым присущ желто-оранжевый оттенок света и неестественная цветопередача);

  • Номинальные напряжения: 120/220/277/347В AC, 12/24В DC
  • Номинальные мощности: 12 - 500 Вт
  • Диапазон цветовых температур: 2700К - 6500К
  • Отсутствие мерцаний: рабочая частота от 190кГц до 250кГц или единицы мегагерц в зависимости от моделей
  • Низкая температура нагрева лампы: +60 °C - +85 °C
  • Широкий диапазон рабочих температур: −40 °C ~ +50 °C
  • Возможность диммирования (изменения интенсивности света): от 30% до 100%
  • Высокий коэффициент мощности электронного балласта (λ>0,95)
  • Низкие гармонические искажения (THD<5%)
  • Экологичность продукта: специальная амальгама; содержание твердотельной ртути <0,5мг, что значительно меньше, чем в обычной люминесцентной лампе

В то время, когда повсеместно пропагандируется использование светодиодных светильников, существуют не менее эффективные альтернативные системы. Не столь распиаренные индукционные лампы, которые недавно начали появляться на рынке, также показывают очень достойные результаты.

Такие лампы ничуть не уступают диодам по основным светотехническим характеристикам, однако стоимость их раза в два-три ниже.

Принцип работы

Несмотря на то, что основной принцип работы таких систем был придуман ещё в прошлом веке, до недавнего времени он не находил воплощения в осветительных приборах.

Суть работы таких систем заключается в раскаливании до состояния плазмы газов, закачанных в колбе. Столь высокий нагрев достигается под воздействием магнитной индукции – колба оплетается спиралью проводов, образующим магнитное поле. При этом выделяется свет высокой интенсивности.

Устройство кольца

Так как нет непосредственного контакта газов с электродами, эффект выгорания минимален. Благодаря этому такие лампы могут прослужить около десяти лет, практически не теряя своей яркости.
По большому счёту, новые индукционные модели – это всем известные люминесцентные лампы (ЛЛ), только усовершенствованные. В них устранены главные недостатки ЛЛ: мерцание, чувствительность к частым включениям, быстрое выгорание ресурса, нестойкость к перепадам напряжения.

Индукционные модели ламп отличаются по расположению ферритовых колец – снаружи на колбе (внешняя индукция) или внутри цоколя и колбы (внутренняя индукция).

Устройство лампы

На данный момент они гораздо менее распространены, чем LED-системы, но многие модели уже поставленный в серийное производство. А значит, уже в ближайшее время они могут составить реальную конкуренцию лидерам рынка.
Основными сдерживающими факторами их распространения является специфическая форма колбы, для которой не подходят плафоны и отражатели стандартных светильников. Впрочем, современные компактные модели, вполне пригодны для установки в обычные светильники.

Плюсы и минусы

К основным преимуществам, которые могут обеспечить индукционные лампы, относят:

  • яркий и чистый световой поток;
  • высокая светоотдача (порядка 80 – 90 лм на Вт – в зависимости от мощности лампы);
  • эффективность и экономичность (потребляют на 80 % меньше ламп накаливания);
  • быстрый запуск – нет никакой задержки старта (как у люминесцентных, например);
  • нечувствительность к частым включениям-выключениям;
  • возможность использовать их в связке с диммером;
  • высокая продолжительность безотказной работы (порядка 60-150 тыс. часов) в условиях среды от -40˚ С до +50˚ С;
  • минимальная потеря яркости свечения на протяжении всех лет эксплуатации;
  • большой разбег мощностей – от 15 до 400 Вт;
  • незначительный нагрев;
  • разные цвета свечения.

Имеют индукционные лампы и ряд недостатков:

  • потенциальная токсичность при повреждении колбы с газами, в которых присутствуют пары ртути, хотя и в гораздо меньших количествах, чем у обычных ЛЛ;
  • необходимость специальной утилизации;
  • большие габариты колб и необходимость использования особых светильников;
  • не подходят для освещения мест, оборудованных тонкой электроникой (АЗС, аэропортов и т.д.) из-за электромагнитных излучений, которые могут нарушить работу приборов;
  • из-за наличия электромагнитного и уф-излучения, не рекомендуется их устанавливать ближе, чем на метр к головам стоящих людей;
  • низкая механическая прочность колбы;

дороговизна производства, и соответственно, высокая стоимость.

Варианты использования индукционок

Внешний вид лампы

Такие лампы выпускаются разных видов и форм. Предлагаются модели с самыми распространёнными цоколями, так что проблем с заменой не должно возникать. Отличает их от большинства аналогов только массивная конструкция самого светящего элемента – колбы в оплётке и крупных ферритовых колец, собственно и провоцирующих магнитную индукцию.

Достаточно габаритные индукционные лампы идеально подходят для внутренней подсветки крупных объектов (производственных цехов, складских помещений, хранилищ и пр.). Промышленные индукционные светильники обеспечивают высокую яркость свечения при относительно небольшом расходе энергии. Как уже упоминалось, по уровню потребления такие системы сопоставимы со светодиодами. Вот только LED-лампы аналогичной мощности обойдутся собственнику в разы дороже.
Кроме того индукционные осветительные системы распространяют свет во все стороны, в результате он рассеивается по помещению более равномерно. У диодов же угол рассеивания гораздо уже. Поэтому при сопоставимой мощности эффективность свечения LED-систем будет ниже.

Благодаря устойчивости к температурным изменениям они могут успешно использоваться и для наружного освещения – подсветки трасс, промплощадок, зон отдыха и мест общего пользования.
Индукционный уличный светильник обеспечит равномерный световой поток высокой интенсивности, да ещё и с адекватной цветопередачей. Благодаря бесконтактной схеме энергообмена, он способен проработать много лет без вмешательства человека. А это важная составляющая общей экономии. Ведь известно, что обслуживание высоких уличных фонарей дело не дешёвое. Требуется привлечение спецтехники и бригады работников с допуском к выполнению работ на высоте.

Биспектральные колбы

Ещё один плюс таких ламп в том, что они выделяют ультрафиолет, максимально походящий на естественный, излучаемый солнцем. А потому такие системы идеально подходят для искусственной подсветки растений. Имеется даже отдельная линейка – фито — лампы. Рекомендуется регулярно подсвечивать ими крытые теплицы, так как даже через прозрачные стёкла перегородок естественный поток ультрафиолета не доходит до саженцев.
Такие светильники успешно используются для обеспечения нормального протекания фотосинтеза у рассады в теплицах или у домашних растений, расположенных в затенённых участках или в квартирах на северной стороне здания.
Под воздействием излучения индукционных фито — ламп заметно улучшается вегетация растений, наблюдается заметный прирост урожайности. Культуры меньше болеют и становятся более устойчивыми к вредителям, так как исходящий от ламп ультрафиолет мягко дезинфицирует верхний почвенный слой.

Поскольку такие системы практически не нагреваются во время работы — они не пересушивают воздух. А значит, можно использовать менее мощные модели ламп, и устанавливать их поближе к местам посадки растений (подвешивать на длинных проводах, к примеру).

Таким образом, благодаря использованию фито – светильников можно своими руками регулировать всхожесть и урожайность взращиваемых культур.

Светотерапии

Для подсветки растений идеально использовать биспектральные индукционные колбы. Они генерируют световой поток одновременно с двумя спектрами: тёплым красным и холодным синим. Благодаря этому создаются оптимальные условия для роста стеблей и листьев (при температуре 6400 К) и для цветения (2700 К). Выглядят эти фито — колбы так:

Такое сочетание позволяет уподобить их свечение солнечным лучам. Под их воздействием фотосинтез у растений происходит максимально эффективно. Нормальная вегетация достигается даже в полностью закрытых помещениях теплиц. Так что неспроста такая линейка ламп в названии имеет приписку « фито » — это такой себе световой стимулятор роста.
Рекомендуем установить индукционку над домашней оранжереей, и понаблюдать за результатом. Убеждены, уже в ближайшее время Вы своими руками будете пожинать плоды «светотерапии».

Выбор именно индукционных ламп для тепличных хозяйств оправдан по многим параметрам:

  • они генерируют самый приемлемый для растений тип излучения;
  • светят очень ярко и при этом весьма экономичны, поэтому могут использоваться на больших площадях и работать непрерывно;
  • они не нагреваются, а значит, не влияют на температурный режим внутри теплиц;
  • могут работать очень долго, без какого бы то ни было вмешательства человека;

Эффективность и окупаемость

Всё хорошо, вот только далеко не всегда можно найти подходящую модель ИЛ в наших магазинах. Вы спросите, можно ли сделать индукционку своими руками? Теоретически можно взять за основу люминесцентную лампу с колбой кольцевидной формы. Прямо на колбе выполнить обмотку, состоящую, например, из 8 витков, и под 90 градусов к ней – сделать 13 витков вокруг ферритового кольца. И затем начать подавать на неё ток, с частотой порядка 2-3 МГц.
Однако эффективность и безопасность такой модели будет сомнительной. Кроме того достаточно сложно будет подобрать количество витков намотки для обеспечения необходимых параметров свечения. Поэтому лучше приобретать уже готовые изделия.
Скорее всего, придётся делать заказ на иностранных торговых интернет-площадках. У нас ИЛ появились относительно недавно, и то используются преимущественно на крупных производствах. Поэтому население мало с ними знакомо, а напрасно. Во многих сферах обычной жизни они могут пригодиться. Они надёжны, эффективны и долговечны. Минимальный гарантийный срок в пять лет также о чём-то говорит.

Индукционные лампы окупят затраты на приобретение уже в течение 1-1,5 лет. Всё зависит от того модель какой мощности Вы выберете, как часто и долго она будет работать.

Кроме того применение индукционок опосредовано влияет на сетевые перегрузки – они заметно уменьшаются. Ведь потребление, а значит и нагрузки на проводку будет минимальны — даже при условии подсветки больших территорий или тех же хозяйств по разведению растений.
Это особенно актуально для тепличных комплексов со старыми электросетями, рассчитанными на небольшую нагрузку. Также при проектировании, когда в новом объекте закладываются экономные фито – лампы, можно использовать менее мощные КТП, и провода с меньшим сечением. Это позволит снизить расходы на светотехническую составляющую проекта.

Выводы

Подытоживая сказанное можно сказать, что лампы индукционного типа скорее пригодны для освещения больших закрытых помещений или просторных открытых площадок. Наличие электромагнитного и уф-излучения, сопутствующих свечению, большие габариты колб — вынуждают ограничивать их применение для бытовых нужд.
Это скорее перспективные производственные светильники, способные эффективно выполнять свою функцию при минимальных затратах для собственника. Установленные на уличных объектах или под высокими сводами производственных помещений они не будут причинять вреда работникам.
Самый удачный пример их применения — использование индукционных фито – ламп для освещения теплиц. Обслуживающий персонал подвергается минимальному облучению, и при этом интенсивность вегетации растений, их урожайность — значительно возрастают, и удобрения не нужны.


Выбираем светильники над рабочим столом для кухни

Сегодня потребители все чаще выбирают энергоэффективные бытовые и промышленные осветительные устройства. Однако помимо экономии важную роль играет и качество подсветки. Достойной альтернативой традиционным источникам освещения являются индукционные лампы.

Они излучают приятный для глаз мягкий свет, не меняющий объективное восприятие предметов. Давайте вместе разберемся в устройстве и принципах работы индукционных ламп.

Первичным источником света в индукционной лампочке служит плазма, искусственно созданная в результате ионизации газовой смеси ВЧ электромагнитным полем.

Ток порождает переменное электрическое поле, обуславливая возникновение газового разряда в стеклянной колбе. Возбужденная ртуть генерирует УФ-излучение, которое благодаря люминофору конвертируется в видимый свет.

Конструкция индукционной лампы включает три базовые функциональные элементы:

  • газоразрядную трубку;
  • индукционную катушку с ферритовым кольцом;
  • электронный балласт.

Внутри трубки находятся капли амальгамы ртути. Сама колба заполнена газом с низкой химической реактивностью – аргоном/криптоном, а ее внутренняя поверхность покрыта неорганическим люминофором.

Индукционная катушка и электромагнит формируют высокочастотное магнитное поле, под воздействием которого свободные электроны ускоряются, сталкиваются и возбуждают атомы ртути.

В результате образуется ультрафиолетовое излучение. Люминофором оно трансформируется в видимое яркое свечение.

Как и в простых флуоресцентных лампочках, сочетание разных люминофоров в покрытии колбы ИЛ дает свечение различных цветов. Чаще всего встречаются устройства с колориметрической температурой 3500 К, 4100 К, 5000 К, 6500 К

Электронный балласт подключается к источнику постоянного напряжения 12 В/24 В или же к сети синусоидального напряжения 120 В/220 В/380 В.

Система управления пускателем трансформирует переменный ток 50 Гц в постоянный, а потом – в ток высокой частоты от 190 кГц до 2,65 МГц.

Этот ВЧ ток и создает магнитное поле. Кроме того, пускатель генерирует стартовый сильный импульс, который зажигает индукционный источник света.

Чтобы обеспечить стабильную работу безэлектродного осветительного устройства, система управления также может изменять силу электрического тока и его частоту через катушку индуктора.

С целью уменьшить рассеяние высокочастотного электромагнитного поля лампы оснащают ферритовыми экранами и/или специальными сердечниками.

Основное отличие индукционных энергосберегающих ламп от других источников света – отсутствие нитей накала и контактных термокатодов. В индукционных светильниках электромагниты расположены снаружи, то есть прямого контакта электродов с ионизированной газовой средой нет

Это делает баллон осветительного устройства более однородным и примерно одинаково нагруженным по температуре.

При продолжительной работе такого освещения растрескивание стеклянной колбы не наблюдается, со временем материал электрода не осаждается на стенках.

Отсутствие электродов накаливания, необходимых для зажигания обычных лампочек, позволяет достичь невероятно длительного срока эксплуатации индукционных светильников – до 120000 часов работы.

Кроме того, ресурс работы индукционных источников света примерно в 2-3 раза превышает срок эксплуатации светодиодов.

Разновидности индукционных ламп

Впервые лампу без контактных электродов продемонстрировал Никола Тесла в далеком 1893 году на Всемирной выставке в Чикаго. Презентованный публике осветительный прибор питался от магнитного поля катушки Тесла. А первый надежный прототип индукционного источника света создал Джон Мелвин Андерсон в 1967 году.

Классификация безэлектродных лампочек

В 1994 году компанией General Electric была представлена компактная энергосберегающая лампа GENURA со встроенным высокочастотным генератором в цоколе.

Серийный выпуск индукционных люминесцентных ламп стартовал в 1990-х годах.

Сегодня лидером в производстве безэлектродных энергоэффективных осветительных устройств являются корпорации PHILIPS Lighting, GE Lighting и OSRAM Licht AGO. В таблице указаны параметры и стоимость разных моделей ламп этих производителей

В зависимости от типа конструкции, индукционные источники света бывают:

  • со встроенным балластом – электрический генератор и лампа совмещены в одном блоке;
  • с отдельным электронным пускателем – наружный генератор и лампа являются разнесенными приборами.

В зависимости от способа размещения катушки эти лампы также делят на устройства с внешним (низкочастотные) и внутренним (высокочастотные) индуктором.

В первом случае катушка с ферромагнитным стержнем обвита вокруг баллона. Рабочая частота лампочек с внешней индукцией лежит в диапазоне 190-250 кГц.

Они имеют лучшие условия для интенсивного теплообмена с окружающей средой, поскольку катушка снаружи герметичной колбы легко рассеивает выделяемое устройством тепло. Срок службы низкочастотных приборов – до 120000 часов.

Во втором случае индукционная катушка с намотанным сердечником расположена внутри стеклянной колбы. Выделяемое тепло оказывается в полости осветительного устройства, поэтому и нагреваются лампы с внутренней индукцией сильнее.

Их рабочая частота находится в интервале 2-3 МГц. Ресурс таких источников света не превышает 75000 часов.

По внешнему виду приборы с внутренним индуктором напоминают вакуумные лампочки. А вот модели с внешним индуктором имеют форму кольца или прямоугольника

Как высокочастотные, так и низкочастотные лампы имеют большой запас прочности и отличаются длительным сроком службы.

Варианты исполнения и маркировка

В настоящее время компаниями, которые специализируются на освещении, налажено серийное производство индукционных лампочек разных форм. Конструктивные особенности и варианты исполнения прослеживаются в их маркировке.

Первые два азбучных знака в шифре определяют вид устройства (ИЛ – индукционная лампа), третий указывает на форму. После буквенного обозначения обычно объявляют мощность.

ИЛК – индукционные лампочки круглой формы. Обладают высокими показателями световой отдачи и большим диапазоном спектрофотометрических температур. Подходят для установки в круглых и овальных светильниках.

Такие источники света активно используются для освещения складов, просторных производственных и ремонтных цехов, торговых комплексов, спортивных баз.

ИЛШ – лампы в форме шара. Выполнены в традиционной форме обычных вакуумных осветительных устройств большой мощности. Создают мягкий свет и зажигаются практически мгновенно.

Подходят для замены на энергоэффективные источники света без необходимости смены самого светильника.

ИЛШ устанавливают в прожекторах для освещения гостиниц и ресторанов, супермаркетов, а также в уличных и промышленных светильниках

ИЛУ – лампочки U-образной формы. Представляют собой приборы с отдельным генератором. Излучают яркий белый свет, при работе не мерцают.

Их задействуют для освещения стадионов, туннелей, метро и автомагистралей, рекламных стендов, вывесок и других объектов.

ИЛБ, ИЛБК – лампы с кольцеобразной формой колбы. В них генератор, катушка и трубка совмещены в едином блоке. Генерируют мягкий свет, который не ослепляет, быстро и легко зажигаются при температурах до -35 °C.

Подобные конструкции используют для подсветки отелей и торговых площадок, парковых зон и скверов, частных приусадебных территорий.

Отдельно стоит сказать об индукционных фитолампах для растений. Они отличаются формой стеклянной колбы и цветом излучения.

Разные модели индукционных фитоламп подходят для освещения зеленых насаждений в определенный период роста и развития. Серии таких изделий обозначают ТИЛ. Следующие две буквы указывают на конкретную модель лампы

Фитолампы индукционные ГП и ВГ предназначены для подсветки растений на стадии вегетативного роста. В них преобладает синий спектр излучения.

Устройства ФЛ используют на начальной фазе образования плодов, а также для ускорения формирования цветов. Они излучают красный свет.

Лампочки модели КЛ являются универсальными. Такие источники света дают возможность управлять ростом насаждений. Они генерируют насыщенный красный свет, необходимый для полноценного развития плодов растений и обильного цветения.

Примеры маркировки:

  • ИЛК-40 – круглая индукционная лампочка мощностью 40 Вт;
  • ТИЛПВГ-120 – прямоугольная фитолампа индукционная с мощностью в 120 Вт, модель ВГ для начального этапа вегетативного роста растений.

Излучение индукционной лампочки на 97% соответствует солнечному спектру, а потому отлично подходит для искусственного освещения тепличных комплексов.

Преимущества использования ИЛ

Безэлектродные лампы генерируют мягкий свет, комфортный для восприятия глазами. Оттенки цветов при этом не искажаются.

Яркость таких ламп можно изменять в пределах 30-100% с помощью простого для устройств с нитью накаливания.

Даже после 75000 часов работы индукционные приборы сохраняют уровень световой мощности на отметке 80-85% от первоначальной.

Обычные ЛЛ дневного света ближе к концу срока эксплуатации теряют до 55% яркости. На их колбах со временем образуются темные непрозрачные круги.

Преимущества использования индукционных безэлектродных ламп:

  • КПД 90%;
  • ресурс работы до 150 000 часов;
  • светоотдача больше 90-160 лм/Вт;
  • оптимальные условия для зрительного восприятия предметов;
  • диапазон рабочих температур в интервале от -35 °C до +50 °C;
  • коэффициент цветопередачи Ra˃80;
  • высокие показатели энергоэффективности;
  • минимальное нагревание колбы;
  • неограниченное количество циклов запуска/выключения;
  • отсутствие пульсации;
  • возможность регулировать интенсивность свечения;
  • гарантийный срок эксплуатации составляет 5 лет.

Производители заявляют, что индукционные источники света имеют лучшие технические характеристики, чем светодиоды и стоят в несколько раз дешевле. Энергопотребление у этих видов лампочек примерно одинаковое.

Применение безэлектродных ламп

Модернизованные осветительные приборы, не содержащие термокатодов и нити накала, используют как для внутреннего, так и для наружного освещения.

Сфера использования ИЛ

Безэлектродные лампы имеют встроенную защиту от КЗ (короткого замыкания) и скачков напряжения.

Индукционные светильники отличаются устойчивостью к вибрационным нагрузкам и случайным ударам, стабильно работают даже при пониженной температуре воздуха

Благодаря высоким показателям светоотдачи при небольшом потреблении электричества их используют в разных сферах:

  • для организации качественной подсветки улиц;
  • в торгово-развлекательных и гостиничных комплексах;
  • в офисных центрах и бытовых помещениях;
  • для освещения просторных цехов и складов на промышленных объектах;
  • для подсветки тепличных хозяйств и оранжерей;
  • для освещения автомагистралей и туннелей;
  • для организации взрывозащищенной подсветки на АЗС.

Благодаря стабильности параметров ртутные безэлектродные лампы используют в качестве прецизионно точечных источников УФ-излучения в спектрометрии.

Кроме этого, принцип индукционного возбуждения газа применяется в процессе перекачки энергии от внешних источников в рабочую среду лазеров.

Однако из-за наличия высокочастотного электромагнитного излучения индукционные светильники не устанавливают на железнодорожных станциях и в аэропортах.

Также эти лампочки способны вызывать помехи при одновременной работе со сверхчувствительным лабораторным и медицинским оборудованием. Поэтому в помещениях с подобной спецтехникой их не рекомендовано использовать.

Уличное и дорожное освещение

Наиболее эффективное дорожное освещение могут обеспечить уличные светильники с индукционными энергоэффективными лампами. Этот тип подсветки гарантирует комфортную видимость как для водителей, так и для пешеходов.

Дорожные светильники имеют прочное консольное крепление и монтируются на столбы, а также стандартные опоры. Их задействуют для освещения парковых зон и скверов, улиц и площадей, шоссе и автостоянок, набережных, дворов.

Мгновенный запуск ИЛ минимизирует потери электроэнергии и позволяет максимально эффективно использовать систему освещения. Это дает возможность организовать подсветку с задействованием датчиков движения

Как пример – мгновенный запуск освещения на автотранспортных магистралях в местах, где происходит движение машин и пешеходов.

Помимо этого, чувствительный датчик движения может быть совмещен с программируемым сумеречным выключателем.

Устройство настраивают под конкретные значения освещенности. При недостаточном уровне света датчик даст команду на включение ламп.

Возможность диммирования позволяет успешно применять интеллектуальные системы для эффективного управления уличной подсветкой.

За счет управления яркостью индукционных ламп с помощью регулятора мощности и астрономического таймера можно добиться реальной экономии электрической энергии, а также значительно сократить затраты на техобслуживание.

Внедрение интеллектуальных систем дает возможность контролировать состояние освещения, измерять и анализировать данные об энергопотреблении светильников.

Безопасные промышленные источники света

Использование устройств на базе индукционной технологии – экономически выгодное решение для модернизации систем освещения промышленных предприятий.

Индукционные светильники отличаются высоким качеством сборки и не нуждаются в регулярном обслуживании. Они существенно снижают потребление электричества и помогают повысить рентабельность производства.

Промышленные осветительные приборы имеют класс защиты IP54, что позволяет эксплуатацию даже в условиях загрязнения и повышенной влажности. Их можно устанавливать в неотапливаемых и плохо вентилируемых помещениях.

Закаленное стекло в сочетании с силиконовой изоляцией надежно защищает корпус от попадания внутрь инородных примесей и воды.

Существуют также промышленные взрывозащищенные модели ИЛ. Они не только обеспечивают качественное освещение, но и предотвращают возникновение пожароопасных ситуаций. Такие приборы повышают уровень безопасности на производстве

На корпус индукционных взрывозащищенных светильников наносят антистатическое полимерное покрытие.

Благодаря этому составу осветительные устройства характеризуются ударопрочностью и устойчивостью к воздействию минусовых температур.

Специальное искробезопасное покрытие не разрушается даже в щелочной и кислотной среде и способно сохранять свои свойства в течение 30 лет.

Подсветка в теплицах и оранжереях

Спектр индукционной лампы на 75% соответствует фотосинтетически активной радиации, необходимой для активного роста и длительного цветения растений.

Именно поэтому лампочки безэлектродного типа задействуют в качестве дополнительных источников в оранжереях и теплицах, для освещения стандартных и компактных гроу-боксов, прямой, боковой и междурядной досветки растений.

Рабочая температура индукционных осветительных приборов не превышает 60 градусов по шкале Цельсия, что позволяет располагать их близко к зеленым насаждениям

Использование таких ламп в гроу-боксах дает возможность значительно сократить расходы на охлаждение резервуаров.

Применение ИЛ также позволяет предварительно проектировать и раздельно устанавливать освещение для каждой зоны теплицы.

Чтобы скорректировать и направить максимум света в нужный сектор используют оптические поверхности – экраны. Они фокусируют излучение на конкретном участке.

А с помощью специальных отражателей равномерно распределяют искусственный свет по всей высоте зеленых насаждений.

Правила выбора ИЛ

Выбирая индукционные устройства освещения, важно учитывать их конструктивные особенности, эксплуатационные характеристики, а также степень безопасности.

Лишь при соблюдении такого подхода ИЛ можно считать целесообразным приобретением.

Сегодня в специализированных магазинах несложно найти индукционные безэлектродные лампы мощностью от 15 Вт до 500 Вт. Но существуют и более мощные, предназначенные для различных производственных нужд.

Лампы с овальной колбой выпускаются для светильников со стандартными патронами E14, E27 и E40.

Также есть специальные прямоугольные и кольцевые виды индукционных осветительных устройств, которые могут работать как в сети переменного тока, так и постоянного.

Стоит отметить, что индукционные лампочки в форме шара по размерам будут крупнее, чем обычные приборы с нитью накаливания, поскольку генератор ВЧ тока спрятан в цоколе. Это важно учитывать при покупке

Все индукционные светильники и безэлектродные лампы проходят обязательную сертификацию.

Поэтому можно с уверенностью говорить об их безопасности. Амальгама находится в запаянной колбе и при соблюдении базовых правил эксплуатации ее утечки исключены.

Однако нужно понимать, как и стандартные люминесцентные лампы, индукционные требуют соответствующей утилизации из-за наличия ртутных соединений и электронных комплектующих.

Твердую амальгаму – сплав ртути с другими металлами - можно использовать повторно. Стекло из лампы также сдают на переработку, но отдельно от люминофора.

Светильники с индукционной технологией не относятся к экологически безопасным видам освещения и в этом критерии сильно уступают светодиодам.

Необходимо добавить, что лампочка индукционного типа выходит на свой стабильный световой поток не сразу. На старте она выдает около 80% от полного излучения.

Чтобы этот показатель дошел до максимума, безэлектродной лампе нужно 2-3 минуты. За это время достаточно разогревается амальгама и испаряется необходимое количество ртути.

Выводы и полезное видео по теме

Индукционные светильники – новое поколение газоразрядных ламп. Принцип функционирования такого типа освещения:

Что делает лампы индукционными, особенности светильников этого вида и сфера применения:

Преимущества использования современных индукционных источников света на промышленных предприятиях:

Правильная установка ламп индукционного типа с соблюдением всех стандартов и норм позволяет эффективно использовать энергосберегающую технологию. Сегодня подобные источники света – разумная альтернатива традиционным подходам к организации освещения.

Тема отличий, преимуществ и недостатков индукционных светильников по сравнению со светодиодными светильниками для промышленного освещения в рунете раскрыта достаточно однобоко.

В основном встречаются ангажированные статьи производителей и торговцев индукционными промышленными светильниками 3-5 летней давности, почитав которые, возникает ощущение того, что индукционное освещение - это лучший вариант из всего, что можно найти на рынке светотехники. Это связано с тем, что развитие в области индукционных разработок, по крайней мере, на данный момент, дошло до своего предела.

В то время светодиодные технологии, наоборот, с каждым годом эволюционируют, становясь эффективнее, дешевле и универсальнее. Компания Грандэнергопроект реализовала множество проектов и с применением светодиодных светильников, и в свое время, индукционных. Поэтому, основываясь на накопленном опыте, хотим внести свои 5 копеек в защиту светодиодных технологий.

Давайте рассмотрим основные нюансы работы и технических характеристик промышленных светодиодных светильников по состоянию на начало 2016 года. Как мы видим, за последние годы расстановка сил поменялась с точностью до обратного.

Срок службы

Производители индукционных светильников заявляют срок службы в 100 000 часов, светодиодных светильников - также от 50 000 до 100 000 часов. На самом деле, лукавят и те и другие.

50 000 часов - это срок жизни источника света, а не светильника. Срок жизни светильника равен сроку жизни источника питания. После поломки его, конечно, можно и заменить. Но это будет сопряжено с дополнительными финансовыми расходами. К примеру, для светильника подвесного промышленного - это вызов вышки, покупка нового источника питания и так далее. Поэтому и в том и другом случае, чем более качественный и, соответственно, дорогой источник питания, тем дольше прослужит светильник.

И, естественно, ни один балласт индукционного светильника не сравнится по надежности и долговечности с драйверами для светодиодных светильников, которые производят Mean Well, Inventronics и Texas Instruments.

Что касается степени деградации светодиодов, на которую так любят ссылаться производители индукционных светильников, то у качественных светодиодов деградация на 30% наступает как раз через 50 000 часов эксплуатации для стандартных моделей, и более до 100 000 часов для специальных серий. После этого они не перестают работать, просто снижается их световой поток. При этом, диодная плата также, в последствии, легко заменяется.

Световой поток

В настоящее время нормой для качественного светодиодные светильники для промышленных помещений с хорошими диодами является световой поток от 80- 90 Лм/Вт.

У ведущих производителей светильников промышленного назначения

реальный фактический рабочий световой поток доходит до 115- 120 Лм/Вт на выходе светильника без ущерба для его надежности. Это даже если не брать в расчёт тех сказочников рынка LED, которые заявляют для своих светильников фантастические показатели, которые они получают, видимо, используя инопланетные технологии.

Качественный индукционный светильник для промышленного освещения на данный момент, как и 5 лет назад фактически выдает на выходе светильника около 80 Лм/ Ватт. Т.е. на данный момент, эффективность светодиодных светильников уже в 1,5 раза выше индукционных. И это только начало. Соответственно и все расходы на энергопотребление будут ниже для владельца промышленного диодного светильника и самих светильников на один и тот же проект потребуется меньше.

Угол рассеивания светового потока

В виду больших габаритов индукционной лампы промышленного освещения становится невозможным использование диффузоров с узким углом рассеивания, менее 60 градусов, а также использование концентрирующих линз. Что ограничивает применение индукционных светильников промышленного назначения..

Либо клиенту приходится покупать светильники для промышленных помещений

большей мощности для того, чтобы получить необходимую норму освещенности, что сказывается на цене светильника, и, соответственно, и потреблении электроэнергии, которое и без этого, выше, чем у современных светодиодных светильников промышленных ip65. В итоге, разница в необходимой мощности светильника может составлять 200%. Особенно это актуально для складских и производственных помещений с высокими подвесом, и больших открытых площадей.

Температура эксплуатации

Как известно, индукционные лампы промышленного освещения не предназначены для работы при температуре ниже - 20°С. Не смотря на то, что многие производители заявляют рабочий показатель до – 40 градусов, множество протоколов и описаний испытаний в независимых лабораториях, которые можно найти в сети, показывают комфортную температуру не ниже – 20 °С.

При подобной ограниченности температурного диапазона исключается возможность применения индукционного уличного освещения на большей части территории РФ, за исключением южных регионов. А для регионов с традиционно холодными зимами исключается и возможность использования индукционных светильников и в неотапливаемых помещениях. Также, как и в камерах глубокой заморозки.

Экологичность

При том, что качественные светодиодные светильники для промышленных помещений на данный момент являются наиболее экологичными во всех отношениях, у индукционных светильников этот вопрос является более слабым звеном.

Во-первых, индукционные источники света требуют такой же дорогостоящей утилизации, как и люминисцентные лампы, во-вторых, электромагнитное излучение индукционных ламп настолько ощутимо, что их не рекомендуют использовать в бытовых помещениях и производственных помещениях с низкими потолками.

Индекс цветопередачи

На данный момент есть огромное множество качественных коммерческих светодиодных светильников, столь популярных в торговых и выставочных центрах с индексом цветопередачи от 80 до 90 Ra и выше в низких цветовых температурах- от 2 300 до 3000 К, что позволяет передавать оттенки товаров и продуктов максимально достоверно, практически на уровне МГЛ. Этот показатель в низких цветовых температурах, у индукционных светильников несколько ниже. Средний фактическое значение CRI обычно около 70.

Универсальность светодиодных светильников

Благодаря компактности светодиодов, количество форм-факторов светодиодный светильников является максимально универсальным из всех типов освещения. В то время, как индукционные светильники подобной возможности не имеют.

Угол рассеивания. Светодиодные светильники могут давать как рассеивающий, так и концентрированный луч света. В то время, как индукционные светильники пригодны только для освещения больших площадей. Однако и в этом качестве современные светодиодные светильники имеют целый ряд преимуществ.

Возможность диммирования. Светодиодные светильники могут не только корректироваться силу света от 1 до 10 ватт (диммирование), но и менять цветовую температуру (RGB- светодиоды).

Для светодиодных светильников могут задаваться различные программы освещения, что активно используется в животноводстве и сельском хозяйстве. И все активнее начинает применяться в офисном освещение и освещении общественных мест.

Возможность регулировки параметров. Регулируемые коммерческие и промышленные системы с возможностью регулирования угла освещения, цветовой температуры и силы света не оставляют индукционным светильников абсолютно никаких шансов. Правда цена на них достаточно высока, но это лишь вопрос времени.

В то время, как световой поток индукционных светильников не превышает 36 000 Лм, существует множество различных светодиодных «пушек» и модульных систем освещения, в разы превышающих этот показатель.

Прочность. Индукционный источник света изготовлен из хрупкого стекла, что делает его менее надежным при транспортировке, монтаже, усложняет утилизацию и ограничивает возможность применения на некоторых видах производств.

Всего за несколько лет светодиодные технологии совершили большой рывок вперед индукционных аналогов и этот разрыв увеличивается с каждым годом и с каждым кварталом.

Тем не менее, каждый отдельный проект требует индивидуального рассмотрения. В некоторых случаях целесообразность установки индукционного светильника до сих пор остается актуальной в виду их достаточно низкой цены.

При этом, при сравнении рассматривались качественные светодиодные светильники ведущих производителей с передовыми компонентами и качественные индукционные светильники. В случае с дешевыми светодиодными светильниками низкого качества эти преимущества становятся не актуальными. И при ограниченности бюджета, либо в качестве временного решения иногда надежнее будет купить понятный индукционный светильник, чем сомнительный светодиодный.

Компания «Грандэнергопроект» имеет большой опыт реализации проектов светодиодного освещения различных уровней сложности и объемов. Мы предлагаем комплексное решение любой задачи – начиная с оказания консультационных услуг и подбора оптимальных вариантов светильников и заканчивая поставкой оборудования непосредственно до конечного объекта.

В нашем каталоге представлено новейшее оборудование и светотехника из оригинальных компонентов. Продажи осуществляются мелким и крупным оптом. Для получения ответов на интересующие вопросы, свяжитесь с сотрудниками компании по адресу [email protected] или через форму обратной связи в футере страницы.

Индукционная лампа это новое поколение люминесцентных ламп и чтобы понять разницу между ними сначала рассмотрим принцип действия люминесцентной лампы:

  1. Светиться внутреннее покрытие трубки лампы — люминофор. Его в свою очередь побуждает к свечению ультрафиолетовое излучение паров ртути.
  2. Пары ртути излучают ультрафиолет под действием электрического напряжения (поля)
  3. Электрическое поле проходит через полость лампы по инертному газу, как правило используется аргон
  4. В торцах трубки находятся электроды, покрытые окислами щелочноземельных металлов. При включении между противоположными электродами возникает дуговой разряд, проходящий по инертным газам.

Покрытие окислами щелочных металлов электродов необходимо для увеличения срока службы вольфрамовой нити (вольфрамовая нить используется также в лампах накаливания), без него вольфрамовая спираль довольно быстро перегорает от перегрева. Однако со временем данное покрытие разрушается (выгорает, трескается, осыпается). Пик негативного влияния на покрытие вольфрамовой нити случается во время включения лампы, т.к. разряд возникает на небольшом участке нити, вызывая перегрев на данном участке. Постепенно электроды выгорают, перегрев становиться больше, что ведет к перегоранию нити, в следствии чего лампа перестает работать.

Ос но вное конструктивное отличие индукционной лампы состоит в том, что в ее составе нет электродов контактирующих с газовой плазмой. Электроны инертного газа приходят в движение под влиянием электромагнитного поля возникающего в индуктивной катушке с медной обмоткой. Медь в свою очередь мало подвержена разрушению в подобных условиях эксплуатации и продолжительность срока службы лампы будет зависеть от качества других материалов использованных при ее производстве, т.е. благодаря замене электродов на индукционную катушку удалось избавиться от самого ненадежного элемента в лампе. Данная конструкция позволила добиться более высокой производительности светильника и избавиться от колебаний светового потока, взамен получив большие габариты и удорожание себестоимости.

Принцип работы индукционной лампы.

  1. После включения высокочастотный ток с ПРА подается на индуктивные катушки, внутри которых возникает электромагнитное поле.
  2. Под действием поля свободные электроны разгоняются, разогревая лампу и амальгаму из которой испаряются атомы ртути.
  3. Остывая и возвращаясь в свое исходное состояние атомы ртути выделяют энергию — квант ультрафиолетового света. Повторно соударяясь со свободными электронами снова выделяют энергию возвращаясь в исходное состояние и т.д.
  4. Ультрафиолетовый свет проходя через люминофор преобразуется в видимое свечение.

Описанные выше процессы происходят очень быстро, благодаря чему лампа мгновенно загорается на 70% мощности и не требует времени на остывание при повторном включении.


Преимущества индукционных светильников.

— Эксплуатационный срок службы – до 100 тыс. часов.
— Гарантийный срок эксплуатации — 5 лет.
— Малое энергопотребление в сравнении со светильниками на основе ламп ДРЛ и ДНаТ.

— Светоотдача до 85 Лм/Вт.
— Минимальная пульсация (<1%).
— Индекс цветопередачи Ra от 80.
— Температурный режим работы от -50°C до +70 °C
— Виброустойчивость.
— Значительный интервал рабочего напряжения 110 — 280 В.
— Мгновенный пуск и перезапуск.

Свечение индукционного светильника и наглядное воздействие на предмет помещенный в индуктивную катушку: