Что такое солнечный ветер и как он возникает? Солнечный ветер. Факты и теория За какое время солнечный ветер достигает земли

Со скоростью 300–1200 км/с в окружающее космическое пространство.

Характеристики

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений активности и его источников. В зависимости от скорости потоки солнечного ветра делятся на два класса: медленные (примерно 300-400 км/с около орбиты ) и быстрые (600–700 км/с около орбиты Земли).

Существуют и спорадические высокоскоростные (до 1200 км/с) кратковременные потоки.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью при её газодинамическом расширении: при температуре короны около 2 × 10 6 К корона не может находится в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие природы теплопереноса в : развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; эффективно поглощаются веществом короны и разогревают её до температуры 1 - 3 × 10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются в течение нескольких месяцев, и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с - областями короны с относительно низкой температурой (примерно 0,8 × 10 6 К), пониженной плотностью (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу .

Высокоскоростные потоки

Спорадические потоки при движении в пространстве, заполненном медленного солнечного ветра уплотняют плазму перед своим фронтом, образуя движущуюся вместе с ним . Ранее предполагалось, что такие потоки вызываются солнечными вспышками, однако в настоящее время (2005 г.) считается, что спорадические высокоскоростные потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки, и корональные выбросы связаны с одними и теми же активными областями на Солнце и между ними существует зависимость.

Материал из Юнциклопедии


Атмосфера Солнца на 90% состоит из водорода. Самая удаленная от поверхности ее часть называется короной Солнца, она отчетливо видна при полных солнечных затмениях. Температура короны достигает 1,5-2 млн. К, и газ короны полностью ионизирован. При такой температуре плазмы тепловая скорость протонов порядка 100 км/с, а электронов - несколько тысяч километров в секунду. Для преодоления солнечного притяжения достаточна начальная скорость 618 км/с, вторая космическая скорость Солнца. Поэтому постоянно происходит утечка плазмы из солнечной короны в космос. Этот поток протонов и электронов и называется солнечным ветром.

Преодолев притяжение Солнца, частицы солнечного ветра летят по прямым траекториям. Скорость каждой частицы с удалением почти не меняется, но бывает она разной. Эта скорость зависит главным образом от состояния солнечной поверхности, от «погоды» на Солнце. В среднем она равна v ≈ 470 км/с. Расстояние до Земли солнечный ветер проходит за 3-4 суток. При этом плотность частиц в нем убывает обратно пропорционально квадрату расстояния до Солнца. На расстоянии, равном радиусу земной орбиты, в 1 см 3 в среднем находится 4 протона и 4 электрона.

Солнечный ветер уменьшает массу нашей звезды - Солнца - на 10 9 кг в секунду. Хотя это число по земным масштабам и кажется большим, реально оно мало: убыль солнечной массы может быть замечена только за времена, в тысячи раз превышающие современный возраст Солнца, который равен приблизительно 5 млрд. лет.

Интересно и непривычно взаимодействие солнечного ветра с магнитным полем. Известно, что заряженные частицы обычно движутся в магнитном поле Н по окружности или по винтовым линиям. Это верно, однако, только когда магнитное поле достаточно сильное. Точнее говоря, для движения заряженных частиц по окружности нужно, чтобы плотность энергии магнитного поля H 2 /8π была больше, чем плотность кинетической энергии движущейся плазмы ρv 2 /2. В солнечном ветре ситуация обратная: магнитное поле слабое. Поэтому заряженные частицы движутся по прямым, а магнитное поле при этом не постоянно, оно перемещается вместе с потоком частиц, как бы уносится этим потоком на периферию Солнечной системы. Направление магнитного поля во всем межпланетном пространстве остается таким, каким оно было на поверхности Солнца в момент выхода плазмы солнечного ветра.

Магнитное поле при обходе вдоль экватора Солнца, как правило, меняет свое направление 4 раза. Солнце вращается: точки на экваторе совершают оборот за Т = 27 суток. Поэтому межпланетное магнитное поле направлено по спиралям (см. рис.), а вся картина этого рисунка вращается вслед за вращением солнечной поверхности. Угол поворота Солнца меняется, как φ = 2π/Т. Расстояние от Солнца увеличивается со скоростью солнечного ветра: г = vt. Отсюда уравнение спиралей на рис. имеет вид: φ = 2πr/vT. На расстоянии земной орбиты (r = 1,5 10 11 м) угол наклона магнитного поля к радиусу-вектору составляет, как легко проверить, 50°. В среднем такой угол и измеряется космическими кораблями, но не совсем близко от Земли. Вблизи же планет магнитное поле устроено иначе (см. Магнитосфера).

СОЛНЕЧНЫЙ ВЕТЕР - непрерывный поток солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий Солнечную систему до гелиоцентрич. расстояний R ~ 100 а. е. С. в. образуется при газодинамич. расширении солнечной короны (см. Солнце )в межпланетное пространство. При высоких темп-pax, к-рые существуют в солнечной короне (1,5*10 9 К), давление вышележащих слоев не может уравновесить газовое давление вещества короны, и корона расширяется.

Первые свидетельства существования пост. потока плазмы от Солнца получены Л. Бирманом (L. Biermann) в 1950-х гг. по анализу сил, действующих на плазменные хвосты комет. В 1957 Ю. Паркер (Е. Parker), анализируя условия равновесия вещества короны, показал, что корона не может находиться в условиях гидростатич. равновесия, как это раньше предполагалось, а должна расширяться, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей (см. ниже). Впервые поток плазмы солнечного происхождения был зарегистрирован на советском космич. аппарате «Луна-2» в 1959. Существование пост. истечения плазмы из Солнца было доказано в результате многомесячных измерений на амер. космич. аппарате «Маринер-2» в 1962.

Ср. характеристики С. в. приведены в табл. 1. Потоки С. в. можно разделить на два класса: медленные - со скоростью 300 км/с и быстрые - со скоростью 600-700 км/с. Быстрые потоки исходят из областей солнечной короны, где структура магн. поля близка к радиальной. Часть этих областей являются корональными дырами . Медленные потоки С. в. связаны, по-видимому, с областями короны, в к-рых имеется значит, тангенциальный компонент магн. поля.

Табл. 1.- Средние характеристики солнечного ветра на орбите Земли

Скорость

Концентрация протонов

Температура протонов

Температура электронов

Напряжённость магнитного поля

Плотность потока питонов....

2,4*10 8 см -2 *c -1

Плотность потока кинетической энергии

0,3 эрг*см -2 *с -1

Табл. 2.-Относительный химический состав солнечного ветра

Относительное содержание

Относительное содержание

Помимо осн. составляющих С. в.- протонов и электронов, в его составе также обнаружены-частицы, высокоионизов. ионы кислорода, кремния, серы, железа (рис. 1). При анализе газов, захваченных в экспонированных на Луне фольгах, найдены атомы Ne и Аг. Ср. относительный хим. состав С. в. приведён в табл. 2. Ионизац. состояние вещества С. в. соответствует тому уровню в короне, где время рекомбинации мало по сравнению со временем расширения Измерения ионизац. темп-ры ионов С. в. позволяют определять электронную темп-ру солнечной короны.

В С. в. наблюдаются разл. типы волн: ленгмюровские, вистлеры, ионно-звуковые, магнитозвуковые, альвеновские и др. (см. Волны в плазме ).Часть волн альвеновского типа генерируется на Солнце, часть - возбуждается в межпланетной среде. Генерация волн сглаживает отклонения ф-ции распределения частиц от максвелловской и в совокупности с воздействием магн. поля на плазму приводит к тому, что С. в. ведёт себя как сплошная среда. Волны альвеновского типа играют большую роль в ускорении малых составляющих С. в. и в формировании ф-ции распределения протонов. В С. в. наблюдаются также контактные и вращательные разрывы, характерные для замагниченной плазмы.

Рис. 1. Массовый спектр солнечного ветра. По горизонтальной оси - отношение массы частицы к её заряду, по вертикальной - число частиц, зарегистрированных в энергетическом окне прибора за 10 с. Цифры со значком «+» обозначают заряд иона .

Поток С. в. является сверхзвуковым по отношению к скоростям тех типов волн, к-рые обеспечивают эфф. передачу энергии в С. в. (альвеновские, звуковые и магнитозвуковые волны). Альвеновское и звуковое Маха число С .в. на орбите Земли 7. При обтекании С. в. препятствий, способных эффективно отклонять его (магн. поля Меркурия, Земли, Юпитера, Сатурна или проводящие ионосферы Венеры и, по-видимому, Марса), образуется отошедшая головная ударная волна. С. в. тормозится и разогревается на фронте ударной волны, что позволяет ему обтекать препятствие. При этом в С. в. формируется полость - магнитосфера (собственная или индуцированная), форма и размеры к-рой определяются балансом давления магн. поля планеты и давления обтекающего потока плазмы (см. Магнитосфера Земли, Магнитосферы планет) . В случае взаимодействия С. в. с непроводящим телом (напр., Луна) ударная волна не возникает. Поток плазмы поглощается поверхностью, а за телом образуется полость, постепенно заполняемая плазмой С. в.

На стационарный процесс истечения плазмы короны накладываются нестационарные процессы, связанные со вспышками на Солнце . При сильных вспышках происходит выброс вещества из ниж. областей короны в межпланетную среду. При этом также образуется ударная волна (рис. 2), к-рая постепенно замедляется, распространяясь в плазме С. в. Приход ударной волны к Земле вызывает сжатие магнитосферы, после к-рого обычно начинается развитие магн. бури (см. Магнитные вариации) .

Рис. 2. Распространение межпланетной ударней волны и выброса от солнечной вспышки. Стрелками показано направление движения плазмы солнечного ветра, линии без подписи - силовые линии магнитного поля .

Рис. 3. Типы решений уравнения расширения короны. Скорость и расстояние нормированы на критическую скорость v к и критическое расстояние R к. Решение 2 соответствует солнечному ветру .

Расширение солнечной короны описывается системой ур-ний сохранения массы, момента кол-ва движения и уравнения энергии. Решения, отвечающие разл. характеру изменения скорости с расстоянием, показаны на рис. 3. Решения 1 и 2 соответствуют малым скоростям в основании короны. Выбор между этими двумя решениями определяется условиями на бесконечности. Решение 1 соответствует малым скоростям расширения короны и даёт большие значения давления на бесконечности, т. е. встречается с теми же трудностями, что и модель статич. короны. Решение 2 соответствует переходу скорости расширения через значения скорости звука (v к )на нек-ром критич. расстоянии R к и последующему расширению со сверхзвуковой скоростью. Это решение даёт исчезающе малое значение давления на бесконечности, что позволяет согласовать его с малым давлением межзвёздной среды. Течение этого типа Ю. Паркер назвал С. в. Критич. точка находится над поверхностью Солнца, если темп-ра короны меньше нек-рого критич. значения , где m - масса протона, - показатель адиабаты, - масса Солнца. На рис. 4 показано изменение скорости расширения с гелиоцентрич. расстоянием в зависимости от темп-ры изотермич. изотропной короны. Последующие модели С. в. учитывают вариации корональной темп-ры с расстоянием, двухжидкостный характер среды (электронный и протонный газы), теплопроводность, вязкость, несферич. характер расширения.

Рис. 4. Профили скорости солнечного ветра для модели изотер» мической короны при различных значениях корональной температуры .

С. в. обеспечивает осн. отток тепловой энергии короны, т. к. теплопередача в хромосферу, эл--магн. излучение короны и электронная теплопроводность С. в. недостаточны для установления теплового баланса короны. Электронная теплопроводность обеспечивает медленное убывание темп-ры С. в. с расстоянием. С. в. не играет сколько-нибудь заметной роли в энергетике Солнца в целом, т. к. поток энергии, уносимый им, составляет ~10 -7 светимости Солнца.

С. в. уносит с собой в межпланетную среду корональное магн. поле. Вмороженные в плазму силовые линии этого поля образуют межпланетное магн. поле (ММП). Хотя напряжённость ММП невелика и плотность его энергии составляет ок. 1% от плотности кинетич. энергии С. в., оно играет большую роль в термодинамике С. в. и в динамике взаимодействий С. в. с телами Солнечной системы, а также потоков С. в. между собой. Комбинация расширения С. в. с вращением Солнца приводит к тому, что магн. силовые линии, вмороженные в С. в., имеют форму, близкую к спирали Архимеда (рис. 5). Радиальная B R и азимутальная компоненты магн. поля по-разному изменяются с расстоянием вблизи плоскости эклиптики:

где - угл. скорость вращения Солнца, и - радиальная компонента скорости С. в., индекс 0 соответствует исходному уровню. На расстоянии орбиты Земли угол между направлением магн. поля и R порядка 45°. При больших Л магн. поле почти перпендикулярно R.

Рис. 5. Форма силовой линии межпланетного магнитного поля. - угловая скорость вращения Солнца, и - радиальная компонента скорости плазмы, R - гелиоцентрическое расстояние .

С. в., возникающий над областями Солнца с разл. ориентацией магн. поля, образует потоки с различно ориентированным ММП. Разделение наблюдаемой крупномасштабной структуры С. в. на чётное число секторов с разл. направлением радиального компонента ММП наз. межпланетной секторной структурой. Характеристики С. в. (скорость, темп-pa, концентрация частиц и др.) также в ср. закономерно изменяются в сечении каждого сектора, что связано с существованием внутри сектора быстрого потока С. в. Границы секторов обычно располагаются внутри медленного потока С. в. Чаще всего наблюдаются 2 или 4 сектора, вращающихся вместе с Солнцем. Эта структура, образующаяся при вытягивании С. в. крупномасштабного магн. поля короны, может наблюдаться в течение неск. оборотов Солнца. Секторная структура ММП - следствие существования токового слоя (ТС) в межпланетной среде, к-рый вращается вместе с Солнцем. ТС создаёт скачок магн. поля - радиальные компоненты ММП имеют разные знаки по разные стороны ТС. Этот ТС, предсказанный X. Альвеном (Н. Alfven), проходит через те участки солнечной короны, к-рые связаны с активными областями на Солнце, и разделяет указанные области с разл. знаками радиальной компоненты солнечного магн. поля. ТС располагается приблизительно в плоскости солнечного экватора и имеет складчатую структуру. Вращение Солнца приводит к закручиванию складок ТС в спирали (рис. 6). Находясь вблизи плоскости эклиптики, наблюдатель оказывается то выше, то ниже ТС, благодаря чему попадает в секторы с разными знаками радиальной компоненты ММП.

Вблизи Солнца в С. в. существуют долготные и широтные градиенты скорости, обусловленные разностью скоростей быстрых и медленных потоков. По мере удаления от Солнца и укручения границы между потоками в С. в. возникают радиальные градиенты скорости, к-рые приводят к образованию бесстолкновителъных ударных волн (рис. 7). Сначала образуется ударная волна, распространяющаяся вперёд от границы секторов (прямая ударная волна), а затем образуется обратная ударная волна, распространяющаяся к Солнцу.

Рис. 6. Форма гелио-сферного токового слоя. Пересечение его с плоскостью эклиптики (наклонённой к экватору Солнца под углом ~ 7°) даёт наблюдаемую секторную структуру межпланетного магнитного поля .

Рис. 7. Структура сектора межпланетного магнитного поля. Короткие стрелки показывают направление течения плазмы солнечного ветра, линии со стрелками - силовые линии магнитного поля, штрихпунктир - границы сектора (пересечение плоскости рисунка с токовым слоем) .

Т. к. скорость ударной волны меньше скорости С. в., плазма увлекает обратную ударную волну в направлении от Солнца. Ударные волны вблизи границ секторов образуются на расстояниях ~1 а. е. и прослеживаются до расстояний в неск. а. е. Эти ударные волны, так же как и межпланетные ударные волны от вспышек на Солнце и околопланетные ударные волны, ускоряют частицы и являются, т. о., источником энергичных частиц.

С. в. простирается до расстояний ~100 а. е., где давление межзвёздной среды уравновешивает динамич. давление С. в. Полость, заметаемая С. в. в межзвёздной среде, образует гелиосферу (см. Межпланетная среда ).Расширяющийся С. в. вместе с вмороженным в него магн. полем препятствует проникновению в Солнечную систему галактич. космич. лучей малых энергий и приводит к вариациям космич. лучей больших энергий. Явление, аналогичное С. в., обнаружено и у нек-рых др. звёзд (см. Звёздный ветер ).

Лит.: Паркер Е. Н., Динамические процессы в межпланетной среде, пер. с англ., М., 1965; Б р а н д т Д ж., Солнечный ветер, пер. с англ., М., 1973; Хундхаузен А., Расширение короны и солнечный ветер, пер. с англ., М., 1976. О. Л. Вайсберг .

История

Вероятно, что первым предсказал существование солнечного ветра норвежский исследователь Кристиан Биркеланд (норв. Kristian Birkeland ) в г. «С физической точки зрения наиболее вероятно, что солнечные лучи не являются ни положительными ни отрицательными, но и теми и другими вместе». Другими словами, солнечный ветер состоит из отрицательных электронов и положительных ионов .

В 1930-х годах ученые определили, что температура солнечной короны должна достигать миллиона градусов, поскольку корона остается достаточно яркой при большом удалении от Солнца, что хорошо видно во время солнечных затмений. Позднее спектроскопические наблюдения подтвердили этот вывод. В середине 50-х британский математик и астроном Сидни Чепмен определил свойства газов при таких температурах. Оказалось, что газ становится великолепным проводником тепла и должен рассеивать его в пространство за пределы орбиты Земли. В то же время немецкий ученый Людвиг Бирманн (нем. Ludwig Franz Benedikt Biermann ) заинтересовался тем фактом, что хвосты комет всегда направлены прочь от Солнца. Бирманн постулировал, что Солнце испускает постоянный поток частиц, которые создают давление на газ, окружающий комету, образуя длинный хвост.

В 1955 году советские астрофизики С. К. Всехсвятский, Г. М. Никольский, Е. А. Пономарев и В. И. Чередниченко показали , что протяженная корона теряет энергию на излучение и может находиться в состоянии гидродинамического равновесия только при специальном распределении мощных внутренних источников энергии. Во всех других случаях должен существовать поток вещества и энергии. Этот процесс служит физическим основанием для важного явления - «динамической короны». Величина потока вещества была оценена из следующих соображений: если бы корона находилась в гидростатическом равновесии, то высоты однородной атмосферы для водорода и железа относились бы как 56/1, то есть ионов железа в дальней короне наблюдаться не должно. Но это не так. Железо светится во всей короне, причем FeXIV наблюдается в более высоких слоях, чем FeX, хотя кинетическая температура там ниже. Силой, поддерживающей ионы во «взвешенном» состоянии, может быть импульс, передаваемый при столкновениях восходящим потоком протонов ионам железа. Из условия баланса этих сил легко найти поток протонов. Он оказался таким же, какой следовал из гидродинамической теории, подтвержденной впоследствии прямыми измерениями. Для 1955 г. это было значительным достижением, но в «динамическую корону» никто тогда не поверил.

Тремя годами позже Юджин Паркер (англ. Eugene N. Parker ) сделал вывод, что горячее течение от Солнца в чепменовской модели и поток частиц, сдувающий кометные хвосты в гипотезе Бирманна - это два проявления одного и того же явления, которое он назвал «солнечным ветром» . Паркер показал, что даже несмотря на то, что солнечная корона сильно притягивается Солнцем, она столь хорошо проводит тепло, что остается горячей на большом расстоянии. Так как с расстоянием от Солнца его притяжение ослабевает, из верхней короны начинается сверхзвуковое истечение вещества в межпланетное пространство. Более того, Паркер был первым, кто указал, что эффект ослабления гравитации имеет то же влияние на гидродинамическое течение, что и сопло Лаваля : оно производит переход течения из дозвуковой в сверхзвуковую фазу.

Теория Паркера была подвергнута жесткой критике. Статья, посланная в 1958 году Astrophysical Journal была забракована двумя рецензентами и только благодаря редактору, Субраманьяну Чандрасекару попала на страницы журнала.

Однако, ускорение ветра до высоких скоростей еще не было понято и не могло быть объяснено из теории Паркера. Первые численные модели солнечного ветра в короне с использованием уравнений магнитной гидродинамики были созданы Пневманом и Кноппом (англ. Pneuman and Knopp ) в г.

В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (англ. Ultraviolet Coronal Spectrometer (UVCS) ) на борту спутника SOHO были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах. Оказалось, что ускорение ветра много больше, чем предполагалось, исходя из чисто термодинамического расширения. Модель Паркера предсказывала, что скорость ветра становится сверхзвуковой на высоте 4 радиусов Солнца от фотосферы, а наблюдения показали, что этот переход происходит существенно ниже, примерно на высоте 1 радиуса Солнца, подтверждая, что существует дополнительный механизм ускорения солнечного ветра.

Характеристики

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов , протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений солнечной активности и его источников. Многолетние наблюдения на орбите Земли (около 150 000 000 км от Солнца) показали, что солнечный ветер структурирован и обычно делится на спокойный и возмущенный (спорадический и рекуррентный). В зависимости от скорости, спокойные потоки солнечного ветра делятся на два класса: медленные (примерно 300-500 км/с около орбиты Земли) и быстрые (500-800 км/с около орбиты Земли). Иногда к стационарному ветру относят область гелиосферного токового слоя , который разделяет области различной полярности межпланетного магнитного поля, и по своим характеристикам близок к медленному ветру.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью солнечной короны (областью корональных стримеров) при её газодинамическом расширении: при температуре короны около 2·10 6 К корона не может находиться в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие конвективной природы теплопереноса в фотосфере солнца: развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; ударные волны эффективно поглощаются веществом короны и разогревают её до температуры (1-3)·10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются Солнцем в течение нескольких месяцев и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с корональными дырами - областями короны с относительно низкой температурой (примерно 0,8·10 6 К), пониженной плотностью плазмы (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу магнитным полем .

Возмущенные потоки

К возмущенным потокам относят межпланетное проявление корональных выбросов массы (СМЕ), а также области сжатия перед быстрыми СМЕ (называемыми в англоязычной литературе Sheath) и перед быстрыми потоками из корональных дыр (называемыми в англоязычной литературе Corotating interaction region - CIR). Около половины случаев наблюдений Sheath и CIR могут иметь впереди себя межпланетную ударную волну. Именно в возмущенных типах солнечного ветра межпланетное магнитное поле может отклоняться от плоскости эклиптики и содержать южную компоненту поля, которая приводит ко многим эффектам космической погоды (геомагнитной активности , включая магнитные бури). Ранее предполагалось, что возмущенные спорадические потоки вызываются солнечными вспышками , однако в настоящее время считается, что спорадические потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки , и корональные выбросы связаны с одними и теми же источниками энергии на Солнце и между ними существует статистическая зависимость.

По времени наблюдения различных крупномасштабных типов солнечного ветра быстрые и медленные потоки составляют около 53%, гелиосферный токовый слой 6%, CIR – 10%, CME – 22%, Sheath – 9%, и соотношение между временем наблюдения различных типов сильно изменяется в цикле солнечной активности. .

Феномены, порождаемые солнечным ветром

Солнечный ветер порождает на планетах Солнечной системы , обладающих магнитным полем , такие явления, как магнитосфера , полярные сияния и радиационные пояса планет.

В культуре

«Солнечный ветер» - рассказ известного писателя-фантаста Артура Кларка , написанный в 1963 году .

Примечания

  1. Kristian Birkeland, «Are the Solar Corpuscular Rays that penetrate the Earth’s Atmosphere Negative or Positive Rays?» in Videnskapsselskapets Skrifter , I Mat - Naturv. Klasse No.1, Christiania, 1916.
  2. Philosophical Magazine , Series 6, Vol. 38, No. 228, December, 1919, 674 (on the Solar Wind)
  3. Ludwig Biermann (1951). «Kometenschweife und solare Korpuskularstrahlung». Zeitschrift für Astrophysik 29 : 274.
  4. Всехсвятский С.К., Никольский Г.М., Пономарев Е.А., Чередниченко В.И. (1955). «К вопросу о корпускулярном излучении Солнца». Астрономический журнал 32 : 165.
  5. Christopher T. Russell . Institute of Geophysics and Planetary Physics University of California, Los Angeles . Архивировано из первоисточника 22 августа 2011. Проверено 7 февраля 2007.
  6. Roach, John . Astrophysicist Recognized for Discovery of Solar Wind , National Geographic News (August 27, 2003). Проверено 13 июня 2006.
  7. Eugene Parker (1958). «Dynamics of the Interplanetary Gas and Magnetic Fields ». The Astrophysical Journal 128 : 664.
  8. Luna 1 . NASA National Space Science Data Center. Архивировано из первоисточника 22 августа 2011. Проверено 4 августа 2007.
  9. (рус.) 40th Anniversary of the Space Era in the Nuclear Physics Scientific Research Institute of the Moscow State University , contains the graph showing particle detection by Луна-1 at various altitudes.
  10. M. Neugebauer and C. W. Snyder (1962). «Solar Plasma Experiment». Science 138 : 1095–1097.
  11. G. W. Pneuman and R. A. Kopp (1971). «Gas-magnetic field interactions in the solar corona». Solar Physics 18 : 258.
  12. Ермолаев Ю. И., Николаева Н. С., Лодкина И. Г., Ермолаев М. Ю. Относительная частота появления и геоэффективность крупномасштабных типов солнечного ветра // Космические исследования . - 2010. - Т. 48. - № 1. - С. 3–32.
  13. Cosmic Rays Hit Space Age High . НАСА (28 сентября 2009). Архивировано из первоисточника 22 августа 2011. Проверено 30 сентября 2009. (англ.)

Литература

  • Паркер Е. Н. Динамические процессы в межпланетной среде / Пер. с англ. М.: Мир, 1965
  • Пудовкин М. И. Солнечный ветер// Соросовский образовательный журнал, 1996, No 12, с. 87-94.
  • Хундхаузен А. Расширение короны и солнечный ветер / Пер. с англ. М.: Мир, 1976
  • Физическая энциклопедия, т.4 - М.:Большая Российская Энциклопедия стр.586 , стр.587 и стр.588
  • Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986
  • Гелиосфера (Под ред. И.С. Веселовского, Ю.И. Ермолаева) в монографии Плазменная гелиогеофизика / Под ред. Л. М. Зеленого, И. С. Веселовского. В 2-х т. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.

См. также

Ссылки

В.Б.Баранов, Московский государственный университет им. М.В. Ломоносова

В статье рассматривается проблема сверхзвукового расширения солнечной короны (солнечный ветер). Анализируются четыре главные проблемы: 1) причины истечения плазмы из солнечной короны; 2) однородно ли такое истечение; 3) изменение параметров солнечного ветра с удалением от Солнца и 4) как солнечный ветер истекает в межзвездную среду.

Введение

Прошло почти 40 лет с тех пор, как американский физик Е. Паркер теоретически предсказал явление, которое получило название "солнечный ветер" и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах "Луна-2" и "Луна-3". Солнечный ветер представляет собой поток полностью ионизованной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (на одной астрономической единице (а.е.) от Солнца) скорость VE этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) ne = 10-20 частиц в кубическом сантиметре, а их температура Te равна примерно 100 000 К (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1

= 10- 5 Гс).

Немного истории, связанной с теоретическим предсказанием солнечного ветра

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления в ее атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это равновесие выражается в виде обыкновенного дифференциального уравнения

где R - газовая постоянная, легко получается так называемая барометрическая формула, которая в частном случае постоянной температуры Т будет иметь вид

(3)

В формуле (3) величина p0 представляет собой давление у основания атмосферы звезды (при r = r0). Из этой формулы видно, что при r

, то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от значения давления p0.

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось формулами, аналогичными формулам (1), (2), (3) . Учитывая необычное и до конца еще непонятое явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен (см., например, ) развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей пионерской работе Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы типа (3) для статической солнечной короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предположил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения равновесия (1) он предложил использовать гидродинамическое уравнение движения вида

(4)

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под

подразумевается масса Солнца.

При заданном распределении температуры Т система уравнений (2) и (4) имеет решения типа представленных на рис. 1. На этом рисунке через a обозначена скорость звука, а r* - расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис. 1 имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r*) к сверхзвуковому (при r > r*), и назвал такое течение солнечным ветром. Однако это утверждение оспаривалось в работе Чемберленом, который полагал наиболее реальным решение, соответствующее кривой 2, описывающей всюду дозвуковой "солнечный бриз". При этом первые эксперименты на космических аппаратах (см., например, ), обнаружившие сверхзвуковые потоки газа от Солнца, не казались, судя по литературе, Чемберлену достаточно достоверными.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии .

Представления об однородном истечении плазмы из солнечной короны

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически-симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис. 1, то есть с переходом через скорость звука. Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис. 2.

В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше его кинетической энергии направленного движения). Путем геометрического поджатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля - гравитационная сила солнечного притяжения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (иногда их называют плазменной турбулентностью), накладывающихся на среднее течение, а само течение уже не является адиабатическим. Количественный анализ таких процессов еще требует своего исследования.

Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции В оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть только в рамках науки, которая называется магнитной гидродинамикой. К каким результатам приводят такие рассмотрения? Согласно пионерской в этом направлении работе (см. также ), магнитное поле приводит к появлению электрических токов j в плазме солнечного ветра, что, в свою очередь, приводит к появлению пондеромоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен "звездный ветер". В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы открывает возможность пересмотра этой гипотезы.